Enhancement of endocannabinoid-dependent depolarization-induced suppression of excitation in glycinergic neurons by prolonged exposure to high doses of salicylate

Publication date: Available online 17 February 2018 Source:Neuroscience Author(s): João Zugaib, Ricardo M. Leão The Dorsal Cochlear Nucleus (DCN) is a region which has been traditionally linked to the genesis of tinnitus, the constant perception of a phantom sound. Sodium salicylate, a COX-2 inhibitor, can induce tinnitus in high doses. Hyperactivity of DCN neurons is observed in several animal models of tinnitus, including salicylate-induced tinnitus. The DCN presents several forms of endocannabinoid (EC) dependent synaptic plasticity and COX-2 can also participate in the oxidative degradation of ECs. We recently demonstrated that short-term perfusion of sodium salicylate and other inhibitors of both oxidative and hydrolytic EC degradation did not affect depolarization-induced suppression of excitation (DSE), a form of EC- dependent short-term synaptic plasticity. Here, we show that prolonged incubation with high doses of sodium salicylate (1.4 mM) enhances DSE of synapses onto glycinergic DCN interneurons but not those innervating glutamatergic DCN fusiform neurons. This effect was not reproduced with lower doses of salicylate (140 µM) or with ibuprofen, another inhibitor of COX-2. This effect was not observed in the presence of AM251, an antagonist/inverse agonist of cannabinoid CB1 receptors, showing that it was dependent on EC release. Finally we demonstrated that incubation with salicylate potentiated the increase in intracellular calcium during the depolarizatio...
Source: Neuroscience - Category: Neuroscience Source Type: research