A Review of Mathematical Models for Muscular Dystrophy: A Systems Biology Approach

Discussion With new developments in computational power and data availability, a growing amount of research is using a systems biology approach to understand pathogenesis and progression of disease. Effective and integrated in vitro and in silico models could inform biological phenomena, even without the need of a living subject. For instance, over the last few decades, collagen hydrogel with muscle derived cells (CHMDCs) have promised to revolutionize in vitro experiments and tissue engineering. For CHMDCs to reach the envisioned use, verification by use of mathematical simulations are needed. Recently while examining shape and design, Hodgson (2015)80 used a combination finite elements and agent based analysis to illustrate the lines of principle strain and cell migration in CHMDCs confirming earlier in vitro work by Smith et al. (2012)81 . As MD is a rare disorder, the use of mathematical models could help elucidate the underlining mechanisms of the disease that might not be easily detectable given the limited subject pool. Although genetic studies have implicated genes as the cause of many types of MD, relatively little is know about about common pathways between these genes that may affect pathogenesis and create similar phenotypes; this necessitates the use of mathematical models describing GRNs (Gene Section). Common genes like Dik1, Dusp13, and Casq21623and there downstream pathways provide future prospects for therapeutic intervention. Mitochondrial and immunolog...
Source: PLOS Currents Muscular Dystrophy - Category: Neurology Authors: Source Type: research