High level production of a recombinant acid stable exoinulinase from Aspergillus kawachii

We describe here the production of an acid-stable recombinant inulinase from Aspergillus kawachii in the Pichia pastoris system and the recombinant enzyme's biochemical characteristics and potential application to industrial processes. After an appropriate cloning strategy, this genetically engineered inulinase was successfully overproduced in fed-batch fermentations, reaching up to 840 U/ml after a 72-h cultivation. The protein, purified to homogeneity by chromatographic techniques, was obtained at a 42% yield. The following biochemical characteristics were determined: the enzyme had an optimal pH of 3, was stable for at least 3 h at 55 °C, and was inhibited in catalytic activity almost completely by Hg+2. The respective Km and Vmax for the recombinant inulinase with inulin as substrate were 1.35 mM and 2673 μmol/min/mg. The recombinant enzyme is an exoinulinase but also possesses synthetic activity (i. e., fructosyl transferase). The high level of production of this recombinant plus its relevant biochemical properties would argue that the process presented here is a possible recourse for industrial applications in carbohydrate processing.
Source: Protein Expression and Purification - Category: Biochemistry Source Type: research