A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing

Many human cancers are resistant to immunotherapy, for reasons that are poorly understood. We used a genome-scale CRISPR-Cas9 screen to identify mechanisms of tumor cell resistance to killing by cytotoxic T cells, the central effectors of antitumor immunity. Inactivation of >100 genes—including Pbrm1, Arid2, and Brd7, which encode components of the PBAF form of the SWI/SNF chromatin remodeling complex—sensitized mouse B16F10 melanoma cells to killing by T cells. Loss of PBAF function increased tumor cell sensitivity to interferon-, resulting in enhanced secretion of chemokines that recruit effector T cells. Treatment-resistant tumors became responsive to immunotherapy when Pbrm1 was inactivated. In many human cancers, expression of PBRM1 and ARID2 inversely correlated with expression of T cell cytotoxicity genes, and Pbrm1-deficient murine melanomas were more strongly infiltrated by cytotoxic T cells.
Source: ScienceNOW - Category: Science Authors: Tags: Medicine, Diseases r-articles Source Type: news