The role of unfolded protein response and ER-phagy in quantum dots-induced nephrotoxicity: an in vitro and in vivo study.

The role of unfolded protein response and ER-phagy in quantum dots-induced nephrotoxicity: an in vitro and in vivo study. Arch Toxicol. 2018 Feb 12;: Authors: Jiang S, Lin Y, Yao H, Yang C, Zhang L, Luo B, Lei Z, Cao L, Lin N, Liu X, Lin Z, He C Abstract Unfolded protein response (UPR) and endoplasmic reticulum (ER)-phagy are essential for cell homeostasis. Quantum dots (QDs), which have been widely used for biomedical applications, can accumulate in the kidney tissues and may cause renal dysfunction. However, the molecular mechanism of QDs-induced nephrotoxicity is still obscure. The present study was aimed to elucidate the role and mechanism of UPR and ER-phagy in QDs-induced nephrotoxicity. Herein, human embyronic kidney (HEK) cells were exposed to 15, 30, 45, and 60 nM cadmium telluride (CdTe)-QDs for 12 and 24 h. And CdTe-QDs (30-60 nM) inhibited the HEK cell viability. The clathrin-dependent endocytosis was determined as the main pathway of CdTe-QDs cellular uptake. Within cells, CdTe-QDs disrupted ER ultrastructure and induced UPR and FAM134B-dependent ER-phagy. Blocking UPR with inhibitors or siRNA rescued the FAM134B-dependent ER-phagy, which was triggered by CdTe-QDs. Moreover, suppression of UPR or FAM134B-dependent ER-phagy restored the cell vability. In vivo, mice were intravenously injected with 8 and 16 nmol/kg body weight CdTe-QDs for 24 h. Kidney was shown as one of highest distributed organs of CdTe-QDs, result...
Source: Archives of Toxicology - Category: Toxicology Authors: Tags: Arch Toxicol Source Type: research