The Metabolic Disturbances of Motoneurons Exposed to Glutamate

AbstractGlutamate-induced excitotoxicity is considered as one of the major pathophysiological factors of motoneuron death in amyotrophic lateral sclerosis and other motoneuron diseases. In order to expand our knowledge on mechanisms of glutamate-induced excitotoxicity, the present study proposes to determine the metabolic consequences of glutamate and astrocytes in primary enriched motoneuron culture. Using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS), we showed that the presence of astrocytes and glutamate profoundly modified the metabolic profile of motoneurons. Our study highlights for the first time that crosstalk between astrocytes and enriched motoneuron culture induced alterations in phenylalanine, tryptophan, purine, arginine, proline, aspartate, and glutamate metabolism in motoneurons. We observed that astrocytes modulate the sensitivity of motoneurons to glutamate, since metabolites altered by glutamate in motoneurons cultured alone were different (except 5-hydroxylysine) from those altered in co-cultured motoneurons. Our findings provide new insight into the metabolic alterations associated to astrocytes and glutamate in motoneurons and provide opportunities to identify novel therapeutic targets.
Source: Molecular Neurobiology - Category: Neurology Source Type: research

Related Links:

Publication date: Available online 12 October 2018Source: Neuroscience LettersAuthor(s): Yan-Ming Wei, Bo HanAbstractMany neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), are characterised by the intracellular appearance of protein aggregates or insoluble materials. Accelerated removal of related toxic proteins might be beneficial for these diseases. Here we describe an inducible role of Beclin1, an essential regulator for autophagy, in degradation of the familial ALS-linked Cu/Zn superoxide dismutase 1 (SOD1) mutant. We confirmed that the SOD1 mutant exhibited an increased RIPA (radioimmune precipi...
Source: Neuroscience Letters - Category: Neuroscience Source Type: research
Source: Expert Opinion on Drug Discovery - Category: Drugs & Pharmacology Authors: Source Type: research
Source: Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration - Category: Neurology Authors: Source Type: research
In this study, we attempted to delineate the aggregation-prone sequences of the structural domain of TDP-43. Here, we investigated the self-assembly of peptides of TDP-43 using aggregation prediction algorithms, Zipper DB and AMYLPRED2. The three aggregation-prone peptides identified were from N-terminal domain (24GTVLLSTV31), and RNA recognition motifs, RRM1 (128GEVLMVQV135) and RRM2 (247DLIIKGIS254). Furthermore, the amyloid fibril forming propensities of these peptides were analyzed through different biophysical techniques and molecular dynamics simulation. Our study shows the different aggregation ability of conserved ...
Source: Biochimica et Biophysica Acta (BBA) Proteins and Proteomics - Category: Biochemistry Source Type: research
ConclusionsTherefore, we have demonstrated FUS as a modulator of circadian gene expression, and provided novel mechanistic insights into the mutual influence between circadian control and neurodegeneration-associated proteins.
Source: Translational Neurodegeneration - Category: Neurology Source Type: research
Geriatrics&Gerontology International,Volume 18, Issue 10, Page 1519-1520, October 2018.
Source: Geriatrics and Gerontology International - Category: Geriatrics Authors: Source Type: research
TAR DNA-binding protein of 43 kDa (TDP-43) forms pathological aggregates in neurodegenerative diseases, particularly in certain forms of frontotemporal dementia and amyotrophic lateral sclerosis. Pathological modifications of TDP-43 include proteolytic fragmentation, phosphorylation, and ubiquitinylation. A pathognomonic TDP-43 C-terminal fragment (CTF) spanning amino acids 193–414 contains only four lysine residues that could be potentially ubiquitinylated. Here, serial mutagenesis of these four lysines to arginine revealed that not a single residue is responsible for the ubiquitinylation of mCherry-tagged CTF. Remo...
Source: Journal of Biological Chemistry - Category: Chemistry Authors: Tags: Molecular Bases of Disease Source Type: research
Amyotrophic Lateral Sclerosis (ALS) is the third most common adult onset neurodegenerative disorder worldwide. It is generally characterized by progressive paralysis starting at the limbs ultimately leading to death caused by respiratory failure. There is no cure and current treatments fail to slow the progression of the disease. As such, new treatment options are desperately needed. Epigenetic targets are an attractive possibility because they are reversible. Epigenetics refers to heritable changes in gene expression unrelated to changes in DNA sequence.
Source: Translational Research - Category: Research Authors: Source Type: research
The investigation of amyotrophic lateral sclerosis (ALS) - also known as Lou Gehrig's disease - through muscle-on-a-chip technology has revealed a new drug combination that may serve as an effective treatment of the progressive neurodegenerative disease. These findings highlight organ-on-a-chip technologies - in which live conditions of the body are mimicked in a microfluidic cell culture - as promising platforms for
Source: World Pharma News - Category: Pharmaceuticals Tags: Featured Research Research and Development Source Type: news
ConclusionsThis DTI study in a two-centre setting demonstrated that the neuropathological stages can be mapped in vivo in PLS with high reproducibility and that PLS-associated cerebral propagation, although showing the same corticofugal patterns as ALS, might have a different time course of neuropathology, in analogy to its much slower clinical progression rates.
Source: NeuroImage: Clinical - Category: Radiology Source Type: research
More News: ALS | Brain | Neurology | Study