Novel Hypolipidaemic Drugs: Mechanisms Of Action And Main Metabolic Effects.

Novel Hypolipidaemic Drugs: Mechanisms Of Action And Main Metabolic Effects. Curr Vasc Pharmacol. 2018 Feb 08;: Authors: Filippatos TD, Angelos L, Christopoulou EC, Moses E Abstract Over the last 3 decades, hypolipidaemic treatment has significantly reduced both cardiovascular (CV) risk and events, with statins being the cornerstone of this achievement. Nevertheless, residual CV risk and unmet goals in hypolipidaemic treatment make novel options necessary. Recently marketed monoclonal antibodies against proprotein convertase subtilisin/kexin type 9 (PCSK9) have shown the way towards innovation, while other ways of PCSK9 inhibition like small interfering RNA (Inclisiran) are already being tested. Other effective and well tolerated drugs affect known paths of lipid synthesis and metabolism, such as bempedoic acid blocking acetyl-coenzyme A synthesis at a different level than statins, pemafibrate selectively acting on peroxisome proliferator-activated receptor (PPAR)-alpha receptors and oligonucleotides against apolipoprotein (a). Additionally, other novel hypolipidaemic drugs are in early phase clinical trials, such as the inhibitors of apolipoprotein C-III, which is located on triglyceride (TG)-rich lipoproteins, or the inhibitors of angiopoietin-like 3 (ANGPTL3), that play a key role in lipid metabolism, aiming to beneficial effects on TG levels and glucose metabolism. Among others, gene therapy substituting the loss of essential enzymes is already used ...
Source: Current Vascular Pharmacology - Category: Drugs & Pharmacology Authors: Tags: Curr Vasc Pharmacol Source Type: research

Related Links:

We examined 9293 individuals from the Copenhagen General Population Study using nuclear magnetic resonance spectroscopy measurements of total cholesterol, free- and esterified cholesterol, triglycerides, phospholipids, and particle concentration. Fourteen subclasses of decreasing size and their lipid constituents were analysed: six subclasses were very low-density lipoprotein (VLDL), one intermediate-density lipoprotein (IDL), three low-density lipoprotein (LDL), and four subclasses were high-density lipoprotein (HDL). Remnant lipoproteins were VLDL and IDL combined. Mean nonfasting cholesterol concentration was 72...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In this study, we found that cofilin competes with tau for direct microtubule binding in vitro, in cells, and in vivo, which inhibits tau-induced microtubule assembly. Genetic reduction of cofilin mitigates tauopathy and synaptic defects in Tau-P301S mice and movement deficits in tau transgenic C. elegans. The pathogenic effects of cofilin are selectively mediated by activated cofilin, as active but not inactive cofilin selectively interacts with tubulin, destabilizes microtubules, and promotes tauopathy. These results therefore indicate that activated cofilin plays an essential intermediary role in neurotoxic signaling th...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
This study shows that mRNA levels of the aging related lamin A splice variant progerin, associated with premature aging in HGPS, were significantly upregulated in subjects with BMI ≥ 25 kg/m2. Moreover, our data revealed a significantly positive correlation of BMI with progerin mRNA. These data provide to our knowledge for the first-time evidence for a possible involvement of progerin in previously observed accelerated aging of overweight and obese individuals potentially limiting their longevity. Our results also showed that progerin mRNA was positively correlated with C-reactive protein (CRP). This might suggest an as...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In atherosclerosis, fatty deposits form in blood vessel walls, narrowing and eventually rupturing or blocking them. It is one of the largest causes of death. The majority of efforts to treat atherosclerosis are focused on reducing the input of LDL cholesterol. This means statins and other, more recent approaches to lower levels of LDL cholesterol in the bloodstream, such as PCSK9 inhibitors. It is possible to reduce blood cholesterol to very low levels indeed, far below normal, and this actually has comparatively little effect on existing atherosclerotic lesions. Patients still die. The disease still progresses, just more ...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs
Publication date: Available online 22 March 2019Source: Pharmacological ResearchAuthor(s): Saeideh Hajighasemi, Armita Mahdavi Gorabi, Vanessa Bianconi, Matteo Pirro, Maciej Banach, Hossein Ahmadi tafti, Željko Reiner, Amirhossein SahebkarAbstractFamilial hypercholesterolemia (FH) is a genetic autosomal dominant disorder caused by an impaired receptor-mediated low-density lipoprotein (LDL) removal from the circulation, mainly due to disruptive autosomal co-dominant mutations in the LDL receptor (LDLr) gene, but also less frequently in the apolipoprotein B100 (APOB) and proprotein convertase subtilisin/kexin type 9 (PCSK9)...
Source: Pharmacological Research - Category: Drugs & Pharmacology Source Type: research
Fight Aging! provides a weekly digest of news and commentary for thousands of subscribers interested in the latest longevity science: progress towards the medical control of aging in order to prevent age-related frailty, suffering, and disease, as well as improvements in the present understanding of what works and what doesn't work when it comes to extending healthy life. Expect to see summaries of recent advances in medical research, news from the scientific community, advocacy and fundraising initiatives to help speed work on the repair and reversal of aging, links to online resources, and much more. This content is...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Fight Aging! provides a weekly digest of news and commentary for thousands of subscribers interested in the latest longevity science: progress towards the medical control of aging in order to prevent age-related frailty, suffering, and disease, as well as improvements in the present understanding of what works and what doesn't work when it comes to extending healthy life. Expect to see summaries of recent advances in medical research, news from the scientific community, advocacy and fundraising initiatives to help speed work on the repair and reversal of aging, links to online resources, and much more. This content is...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In this study, we found that TNF-α resulted in an impairment of autophagic flux in microglia. Concomitantly, an increase of M1 marker expression and reduction of M2 marker expression were observed in TNF-α challenged microglia. Upregulation of autophagy via serum deprivation or pharmacologic activators (rapamycin and resveratrol) promoted microglia polarization toward M2 phenotype, as evidenced by suppressed M1 and elevated M2 gene expression, while inhibition of autophagy with 3-MA or Atg5 siRNA consistently aggravated the M1 polarization induced by TNF-α. Moreover, Atg5 knockdown alone was suffic...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In this study, we found that TXNIP deficiency induces accelerated senescent phenotypes of mouse embryonic fibroblast (MEF) cells under high glucose condition and that the induction of cellular ROS or AKT activation is critical for cellular senescence. Our results also revealed that TXNIP inhibits AKT activity by a direct interaction, which is upregulated by high glucose and H2O2 treatment. In addition, TXNIP knockout mice exhibited an increase in glucose uptake and aging-associated phenotypes including a decrease in energy metabolism and induction of cellular senescence and aging-associated gene expression. We propose that...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Authors: Jiang L, Wang LY, Cheng XS Abstract Familial hypercholesterolemia (FH) is an autosomal-dominant disorder that is characterized by high plasma low-density lipoprotein cholesterol (LDL-c) levels and an increased risk of cardiovascular disease. Despite the use of high-dose statins and the recent addition of proprotein convertase subtilisin/kexin type 9 inhibitors as a treatment option, many patients with homozygous FH fail to achieve optimal reductions of LDL-c levels. Gene therapy has become one of the most promising research directions for contemporary life sciences and is a potential treatment option for F...
Source: Journal of Atherosclerosis and Thrombosis - Category: Cardiology Tags: J Atheroscler Thromb Source Type: research
More News: Cardiology | Cardiovascular | Cholesterol | Clinical Trials | Drugs & Pharmacology | Gene Therapy | Genetics | Heart | Statin Therapy