Systemic or Forebrain Neuron-Specific Deficiency of Geranylgeranyltransferase-1 Impairs Synaptic Plasticity and Reduces Dendritic Spine Density

Publication date: 1 March 2018 Source:Neuroscience, Volume 373 Author(s): David Hottman, Shaowu Cheng, Andrea Gram, Kyle LeBlanc, Li-Lian Yuan, Ling Li Isoprenoids and prenylated proteins regulate a variety of cellular functions, including neurite growth and synaptic plasticity. Importantly, they are implicated in the pathogenesis of several diseases, including Alzheimer’s disease (AD). Recently, we have shown that two protein prenyltransferases, farnesyltransferase (FT) and geranylgeranyltransferase-1 (GGT), have differential effects in a mouse model of AD. Haplodeficiency of either FT or GGT attenuates amyloid-β deposition and neuroinflammation but only reduction in FT rescues cognitive function. The current study aimed to elucidate the potential mechanisms that may account for the lack of cognitive benefit in GGT-haplodeficient mice, despite attenuated neuropathology. The results showed that the magnitude of long-term potentiation (LTP) was markedly suppressed in hippocampal slices from GGT-haplodeficient mice. Consistent with the synaptic dysfunction, there was a significant decrease in cortical spine density and cognitive function in GGT-haplodeficient mice. To further study the neuron-specific effects of GGT deficiency, we generated conditional forebrain neuron-specific GGT-knockout (GGTf/fCre+) mice using a Cre/LoxP system under the CAMKIIα promoter. We found that both the magnitude of hippocampal LTP and the dendritic spine density of cortical neurons were...
Source: Neuroscience - Category: Neuroscience Source Type: research