Acute Stress Persistently Alters Locus Coeruleus Function and Anxiety-like Behavior in Adolescent Rats

Publication date: 1 March 2018 Source:Neuroscience, Volume 373 Author(s): Olga Borodovitsyna, Matthew D. Flamini, Daniel J. Chandler Stress is a physiological state characterized by altered neuroendocrine signaling, behavioral arousal, and anxiety. Chronic or traumatic stress may predispose individuals for multiple somatic and psychiatric illnesses. The locus coeruleus (LC) is a major node in the stress response that integrates input from multiple stress responsive neural circuits and releases norepinephrine (NE) throughout the central nervous system (CNS) to promote vigilance and anxiety. Many mood disorders associated with prior stress are characterized by chronically altered noradrenergic signaling, yet the long-term impact of an acute stressor on LC function is not clear. To determine how acute stress could affect anxiety-like behavior as well as LC function at immediate and extended time points, rats underwent simultaneous exposure to physical restraint and predator odor. Rats underwent behavioral testing immediately or one week after stressor exposure and were then sacrificed for whole-cell patch-clamp recordings of LC neurons. Stress caused an immediate increase in anxiety-like behaviors in the elevated plus maze (EPM), as well decreased excitatory synaptic transmission and increased spontaneous discharge in LC neurons. These effects persisted for seven days after stress. Importantly, the excitability of LC neurons was increased one week post-stress, but not immed...
Source: Neuroscience - Category: Neuroscience Source Type: research