Neurodegenerative Disorders Treatment: The MicroRNA Role.

Neurodegenerative Disorders Treatment: The MicroRNA Role. Curr Gene Ther. 2018 Jan 19;: Authors: Ridolfi B, Abdel-Haq H Abstract Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease and prion disease are not timely and effectively treated using conventional therapies. This emphasizes the need for alternative therapeutic approaches. In this respect, gene-based therapies have been adopted as potentially feasible alternative therapies, where the microRNA (miRNA) approach has experienced a great explosion in recent years. Because miRNAs have been shown to be implicated in the pathogenesis of several diseases including neurodegenerative diseases, they are intensely studied as candidates for diagnostic and prognostic biomarkers, as predictors of drug response and as therapeutic agents. In this review, we evaluate the feasibility of both direct and indirect miRNA mimics and inhibitors toward the regulation of neurodegenerative-related genes both in vivo and in vitro models, highlight the advantages and drawbacks associated with miRNA-based therapy, and summarize the relevant techniques and approaches attempted to deliver miRNAs to the central nervous system for therapeutic purposes, with particular regard to the exosomes. Additionally, we describe a new approach that holds great promise for the treatment of a wide range of diseases including neurodegenerative disorders. This approach is...
Source: Current Gene Therapy - Category: Genetics & Stem Cells Authors: Tags: Curr Gene Ther Source Type: research

Related Links:

In this study, we assessed the antioxidant properties of Larrea tridentata, collected specifically from the Chihuahuan desert in the region of El Paso del Norte, TX, USA. LT phytochemicals were obtained from three different extracts (ethanol; ethanol: water (60:40) and water). Then the extracts were evaluated in eight different assays (DPPH, ABTS, superoxide; FRAP activity, nitric oxide, phenolic content, UV visible absorption and cytotoxicity in non-cancerous HS27 cells). The three extracts were not affecting the HS27 cells at concentrations up to 120 µg/mL. Among the three extracts, we found that the mixture of...
Source: Molecules - Category: Chemistry Authors: Tags: Article Source Type: research
In conclusion, we focus on the various newer molecular mechanisms that are associated with the basic understanding of neuroinflammation in neurodegeneration.
Source: Neurochemistry International - Category: Neuroscience Source Type: research
Abstract Many evidences indicate that oxidative stress plays a significant role in a variety of human disease states, including neurodegenerative diseases. Iron is an essential metal for almost all living organisms due to its involvement in a large number of iron-containing proteins and enzymes, though it could be also toxic. Actually, free iron excess generates oxidative stress, particularly in brain, where anti-oxidative defences are relatively low. Its accumulation in specific regions is associated with pathogenesis in a variety of neurodegenerative diseases (i.e., Parkinson's disease, Alzheimer's disease, Hunt...
Source: Biometals - Category: Biochemistry Authors: Tags: Biometals Source Type: research
Publication date: Available online 7 July 2018Source: Pharmacological ResearchAuthor(s): Samira Shirooie, Seyed Fazel Nabavi, Ahmad R. Dehpour, Tarun Belwal, Solomon Habtemariam, Sandro Argüelles, Antoni Sureda, Maria Daglia, Michał Tomczyk, Eduardo Sobarzo-Sanchez, Suowen Xu, Seyed Mohammad NabaviAbstractNeurodegenerative diseases (NDs) such as Parkinson's (PD), Alzheimer's (AD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) cause significant world-wide morbidity and mortality. To date, there is no drug of cure for these, mostly age-related diseases, although approaches in delaying the pathology...
Source: Pharmacological Research - Category: Drugs & Pharmacology Source Type: research
Publication date: July 2018Source: Neurochemistry International, Volume 117Author(s): Carlo Rodolfo, Silvia Campello, Francesco CecconiAbstractNeurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), and Amyotrophic Lateral Sclerosis (ALS), are a complex “family” of pathologies, characterised by the progressive loss of neurons and/or neuronal functions, leading to severe physical and cognitive inabilities in affected patients. These syndromes, despite differences in the causative events, the onset, and the progression of the disease, share as common feat...
Source: Neurochemistry International - Category: Neuroscience Source Type: research
Publication date: Available online 7 July 2018Source: Pharmacological ResearchAuthor(s): Samira Shirooie, Seyed Fazel Nabavi, Ahmad R. Dehpour, Tarun Belwal, Solomon Habtemariam, Sandro Argüelles, Antoni Sureda, Maria Daglia, Michał Tomczyk, Eduardo Sobarzo-Sanchez, Suowen Xu, Seyed Mohammad NabaviAbstractNeurodegenerative diseases (NDs) such as Parkinson's (PD), Alzheimer's (AD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) cause significant world-wide morbidity and mortality. To date, there is no drug of cure for these, mostly age-related diseases, although approaches in delaying the pathology...
Source: Pharmacological Research - Category: Drugs & Pharmacology Source Type: research
Publication date: July 2018Source: Neurochemistry International, Volume 117Author(s): Carlo Rodolfo, Silvia Campello, Francesco CecconiAbstractNeurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), and Amyotrophic Lateral Sclerosis (ALS), are a complex “family” of pathologies, characterised by the progressive loss of neurons and/or neuronal functions, leading to severe physical and cognitive inabilities in affected patients. These syndromes, despite differences in the causative events, the onset, and the progression of the disease, share as common feat...
Source: Neurochemistry International - Category: Neuroscience Source Type: research
Abstract Neurodegenerative diseases constitute a large proportion of disorders in elderly, majority being sporadic in occurrence with ∼5-10% familial. A strong genetic component underlies the Mendelian forms but nongenetic factors together with genetic vulnerability contributes to the complex sporadic forms. Several gene discoveries in the familial forms have provided novel insights into the pathogenesis of neurodegeneration with implications for treatment. Conversely, findings from genetic dissection of the sporadic forms, despite large genomewide association studies and more recently whole exome and whole ge...
Source: Journal of Genetics - Category: Genetics & Stem Cells Authors: Tags: J Genet Source Type: research
Abstract Oxidative stress is commonly involved in the pathogenesis of various neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. Therefore, lipophilic antioxidants, such as vitamin A, carotinoids, vitamin E, coenzyme Q10, docosahexaenoic acid and eicosapentaenoic acid, have received increasing attention as therapeutic and preventive intervention for neurodegenerative diseases. Although difficulties exist with clinical studies due to the nature of the long-standing progression of neurodegenerative diseases, findings in cell and anima...
Source: International Journal of Clinical Chemistry - Category: Chemistry Authors: Tags: Clin Chim Acta Source Type: research
Publication date: July 2018 Source:Neurochemistry International, Volume 117 Author(s): Carlo Rodolfo, Silvia Campello, Francesco Cecconi Neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), and Amyotrophic Lateral Sclerosis (ALS), are a complex “family” of pathologies, characterised by the progressive loss of neurons and/or neuronal functions, leading to severe physical and cognitive inabilities in affected patients. These syndromes, despite differences in the causative events, the onset, and the progression of the disease, share as common features ...
Source: Neurochemistry International - Category: Neuroscience Source Type: research
More News: ALS | Alternative and Complementary Therapies | Alzheimer's | Brain | Complementary Medicine | Gene Therapy | Genetics | Huntington's Disease | Neurology | Parkinson's Disease