Impact of SSF on Diagnostic Performance of Coronary Computed Tomography Angiography Within 1 Heart Beat in Patients With High Heart Rate Using a 256-Row Detector Computed Tomography

Objective The aim of this study was to investigate the impact of a motion-correction algorithm on diagnostic accuracy of coronary computed tomography angiography (CCTA) within 1 heart beat in patients with high heart rate (HR) using a 256-row detector CT. Method Sixty-four consecutive patients with known or suspected coronary artery disease (symptomatic) and with HR of 75 beats per minute or greater (mean [SD] HR, 82.6 [7.3] beats per minute) undergoing CCTA and invasive coronary angiography within 4 weeks were prospectively enrolled. Coronary computed tomography angiography was performed with a 256-row detector CT (Revolution CT, GE Healthcare) using prospectively electrocardiography-triggered volume scan in 1 heart beat. All images were reconstructed using standard (STD) algorithm and a motion-correction algorithm reconstruction (Snapshot Freeze SSF; GE Healthcare) technique. The image quality of coronary artery segments was evaluated by 2 experienced radiologists using a 4-point scale based on the 18-segment model. Diagnostic accuracy was compared between STD and SSF for significant lumen stenosis (≥50%) of each segment with invasive coronary angiography as the reference standard for determining significant stenosis. Results The diagnostic sensitivity, specificity, positive predictive value, and negative predictive value with STD and SSF were 93.7%, 85.1%, 50.2%, and 98.8% versus 91.9%, 95.8%, 77.9%, and 98.7% on per-segment assessment; 98.7%, 74.0%, 62.9%, and 9...
Source: Journal of Computer Assisted Tomography - Category: Radiology Tags: Cardiovascular Imaging Source Type: research