Induced Earthquakes from Long ‐Term Gas Extraction in Groningen, the Netherlands: Statistical Analysis and Prognosis for Acceptable‐Risk Regulation

Abstract Recently, growing earthquake activity in the northeastern Netherlands has aroused considerable concern among the 600,000 provincial inhabitants. There, at 3 km deep, the rich Groningen gas field extends over 900 km2 and still contains about 600 of the original 2,800 billion cubic meters (bcm). Particularly after 2001, earthquakes have increased in number, magnitude (M, on the logarithmic Richter scale), and damage to numerous buildings. The man‐made nature of extraction‐induced earthquakes challenges static notions of risk, complicates formal risk assessment, and questions familiar conceptions of acceptable risk. Here, a 26‐year set of 294 earthquakes with M ≥ 1.5 is statistically analyzed in relation to increasing cumulative gas extraction since 1963. Extrapolations from a fast‐rising trend over 2001–2013 indicate that—under “business as usual”—around 2021 some 35 earthquakes with M ≥ 1.5 might occur annually, including four with M ≥ 2.5 (ten‐fold stronger), and one with M ≥ 3.5 every 2.5 years. Given this uneasy prospect, annual gas extraction has been reduced from 54 bcm in 2013 to 24 bcm in 2017. This has significantly reduced earthquake activity, so far. However, when extraction is stabilized at 24 bcm per year for 2017–2021 (or 21.6 bcm, as judicially established in Nov. 2017), the annual number of earthquakes would gradually increase again, with an expected all‐time maximum M ≈ 4.5. Further safety management may best follow di...
Source: Risk Analysis - Category: International Medicine & Public Health Authors: Tags: Original Research Article Source Type: research