Transient Receptor Potential Ankyrin 1 (TRPA1) Mediates Lipopolysaccharide (LPS)-Induced Inflammatory Responses in Primary Human Osteoarthritic Fibroblast-Like Synoviocytes

AbstractTransient receptor potential ankyrin 1 (TRPA1) is a membrane-associated cation channel, widely expressed in neuronal and non-neuronal cells. Recently, emerging evidences suggested the crucial role of TRPA1 in the disease progression of osteoarthritis (OA). Therefore, we aimed to investigate whether TRPA1 mediate lipopolysaccharide (LPS)-induced inflammatory responses in primary human OA fibroblast-like synoviocytes (OA-FLS). The expression of TRPA1 in LPS-treated OA-FLS was assessed by polymerase chain reaction (PCR) and western blot (WB), and the functionality of TRPA1 channel by Ca2+ influx measurements. Meanwhile, production of interleukin (IL)-1 β, tumor necrosis factor (TNF)-α, IL-6, matrix metalloproteinase (MMP)-1, and MMP-3 in LPS-treated cells was measured by immunoassay. Histological observation after inhibition of TRPA1 was also performed in rats with LPS-induced inflammatory arthritis. After being induced by LPS, the gene and prot ein expression of TRPA1 was increased in the time-dependent or dose-dependent manner. Meanwhile, Ca2+ influx mediated by TRPA1 in human OA-FLS was also enhanced. In addition, pharmacological inhibition and gene silencing of TRPA1 downregulated the production of IL-1 β, TNF-α, IL-6, MMP-1, and MMP-3 in LPS-treated FLS. Finally, synovial inflammation and cartilage degeneration were also reduced by the TRPA1 antagonist. We found the LPS caused the increased functional expression of TRPA1, the activation of which involved in LPS-...
Source: Inflammation - Category: Allergy & Immunology Source Type: research