Peptide-targeted, stimuli-responsive polymersomes for delivering a cancer stemness inhibitor to cancer stem cell microtumors

In this study, the expression of the neuropilin-1 receptor in both pancreatic and prostate cancer stem cells was identified and targeted with a stimuli-responsive, polymeric nanocarrier to deliver a stemness inhibitor (napabucasin) to cancer stem cells. Reduction-sensitive amphiphilic block copolymers PEG1900-S-S-PLA6000 and the N3-PEG1900-PLA6000 were synthesized. The tumor penetrating iRGD peptide-hexynoic acid conjugate was linked to the N3-PEG1900-PLA6000 polymer via a Cu2+ catalyzed “Click” reaction. Subsequently, this peptide-polymer conjugate was incorporated into polymersomes for tumor targeting and tissue penetration. We prepared polymersomes containing 85% PEG1900-S-S-PLA6000, 10% iRGD-polymer conjugate, and 5% DPPE-lissamine rhodamine dye. The iRGD targeted polymersomes encapsulating the cancer stemness inhibitor napabucasin were internalized in both prostate and pancreatic cancer stem cells. The napabucasin encapsulated polymersomes significantly (p < .05) reduced the viability of both prostate and pancreatic cancer stem cells and decreased the stemness protein expression notch-1 and nanog compared to the control and vesicles without any drug. The napabucasin encapsulated polymersome formulations have the potential to lead to a new direction in prostate and pancreatic cancer therapy by penetrating deeply into the tumors, releasing the encapsulated stemness inhibitor, and killing cancer stem cells. Graphical abstract
Source: Colloids and Surfaces B: Biointerfaces - Category: Biochemistry Source Type: research