The Impact of Housing Temperature-Induced Chronic Stress on Preclinical Mouse Tumor Models and Therapeutic Responses: An Important Role for the Nervous System.

The Impact of Housing Temperature-Induced Chronic Stress on Preclinical Mouse Tumor Models and Therapeutic Responses: An Important Role for the Nervous System. Adv Exp Med Biol. 2017;1036:173-189 Authors: Hylander BL, Eng JW, Repasky EA Abstract In the last 10-15 years, there has been a recognition that the catecholamines (norepinephrine, NE, and epinephrine, Epi) released by the sympathetic nervous system under stressful conditions promote tumor growth through a variety of mechanisms. Tumors recruit autonomic nerves during their development and NE is then released locally in the tumor microenvironment (TME). Acting through adrenergic receptors present on a variety of cells in the TME, NE and Epi induce proliferation, resistance to apoptosis, epithelial to mesenchymal transition, metastasis of tumor cells, angiogenesis, and inflammation in the TME. These pre-clinical studies have been conducted in mouse models whose care and housing parameters are outlined in "The Guide for the Care and Use of Laboratory Animals [1]. In particular, the Guide mandates that mice be housed at standardized sub-thermoneutral temperatures; however, this causes a state of chronic cold-stress and elevated levels of NE. Although mice are able to maintain a normal body temperature when kept at these cool temperatures, it is becoming clear that this cold-stress is sufficient to activate physiological changes which affect experimental outcomes. We find that whe...
Source: Advances in Experimental Medicine and Biology - Category: Research Tags: Adv Exp Med Biol Source Type: research