Neuroprotective effects of the gliopeptide ODN in an in vivo model of Parkinson's disease.

Neuroprotective effects of the gliopeptide ODN in an in vivo model of Parkinson's disease. Cell Mol Life Sci. 2017 Dec 20;: Authors: Bahdoudi S, Ghouili I, Hmiden M, do Rego JL, Lefranc B, Leprince J, Chuquet J, do Rego JC, Marcher AB, Mandrup S, Vaudry H, Tonon MC, Amri M, Masmoudi-Kouki O, Vaudry D Abstract Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of dopamine (DA) neurons through apoptotic, inflammatory and oxidative stress mechanisms. The octadecaneuropeptide (ODN) is a diazepam-binding inhibitor (DBI)-derived peptide, expressed by astrocytes, which protects neurons against oxidative cell damages and apoptosis in an in vitro model of PD. The present study reveals that a single intracerebroventricular injection of 10 ng ODN 1 h after the last administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) prevented the degeneration of DA neurons induced by the toxin in the substantia nigra pars compacta of mice, 7 days after treatment. ODN-mediated neuroprotection was associated with a reduction of the number of glial fibrillary acidic protein-positive reactive astrocytes and a strong inhibition of the expression of pro-inflammatory genes such as interleukins 1β and 6, and tumor necrosis factor-α. Moreover, ODN blocked the inhibition of the anti-apoptotic gene Bcl-2, and the stimulation of the pro-apoptotic genes Bax and caspase-3, induced by MPTP in the substantia nigr...
Source: Cellular and Molecular Life Sciences : CMLS - Category: Cytology Authors: Tags: Cell Mol Life Sci Source Type: research