Presynaptic mGluR5 receptor controls glutamatergic input through protein kinase C-NMDA receptors in paclitaxel-induced neuropathic pain [Neurobiology]

Chemotherapeutic drugs such as paclitaxel cause painful peripheral neuropathy in many cancer patients and survivors. Although NMDA receptors (NMDARs) at primary afferent terminals are known to be critically involved in chemotherapy-induced chronic pain, the upstream signaling mechanism that leads to presynaptic NMDAR activation is unclear. Group I metabotropic glutamate receptors (mGluRs) play a role in synaptic plasticity and NMDAR regulation. Here we report that the Group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG) significantly increased the frequency of miniature excitatory postsynaptic currents (EPSCs) and the amplitude of monosynaptic EPSCs evoked from the dorsal root. DHPG also reduced the paired-pulse ratio of evoked EPSCs in spinal dorsal horn neurons. These effects were blocked by the selective mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP), but not by an mGluR1 antagonist. MPEP normalized the frequency of miniature EPSCs and the amplitude of evoked EPSCs in paclitaxel-treated rats but had no effect in vehicle-treated rats. Furthermore, mGluR5 protein levels in the dorsal root ganglion and spinal cord synaptosomes were significantly higher in paclitaxel- than in vehicle-treated rats. Inhibiting protein kinase C (PKC) or blocking NMDARs abolished DHPG-induced increases in the miniature EPSC frequency of spinal dorsal horn neurons in vehicle- and paclitaxel-treated rats. Moreover, intrathecal administration of MPEP reversed pain hypersensitivit...
Source: Journal of Biological Chemistry - Category: Chemistry Authors: Tags: Molecular Bases of Disease Source Type: research