Various cellular stress components change as the rat ages: An insight into the putative overall age-related cellular stress network.

In this study, we obtained blood from ageing rats upon reaching 20-, 40-, and 72-wk.-old. Subsequently, we measured representative cellular stress-linked biomolecules (H2O2, glutathione reductase, heme, NADPH, NADP, nitric oxide, GADD153) and cell signals [substance P (SP), free fatty acid, calcium, NF-κB] in either or both blood serum and cytosol. Subsequently, network analysis of the overall cellular stress network was performed. Our results show that there are changes affecting stress-linked biomolecules and cell signals as the rat ages. Additionally, based on our network analysis data, we postulate that NADPH, H2O2, GADD153, and SP are the key components and the interactions between these components are central to the overall age-related cellular stress network in the rat blood. Thus, we propose that the main pathway affecting the overall age-related cellular stress network in the rat blood would entail NADPH-related oxidative stress (involving H2O2) triggering GADD153 activation leading to SP induction which in-turn affects other cell signals. PMID: 29197562 [PubMed - as supplied by publisher]
Source: Experimental Gerontology - Category: Geriatrics Authors: Tags: Exp Gerontol Source Type: research
More News: Calcium | Geriatrics | Study