Silencing rno-miR-155-5p in rat temporal lobe epilepsy model reduces pathophysiological features and cell apoptosis by activating Sestrin-3.

In this study, we found that a microRNA, hsa-miR-155-5p, was upregulated in patients with TLE post-surgery, and hence associated with clinical and pathological manifestations and seizure outcomes. We then used a rat model of experimental epilepsy induced by pilocarpine and revealed that the rat homologue was upregulated as well. Importantly, injection of an antagomiR of rno-miR-155-5p in vivo resulted in a reduction of the pathophysiological features associated with the status epilepticus, which was accompanied by decrease of apoptosis in the hippocampus. This effect was correlated with an increase in rat Sestrin-3 expression, which was a gene known to counteract oxidative stress. This rescue was also observed after injection of a lentivirus carrying the small interfering RNA of rat Sestrin-3 gene in the hippocampus. In addition, rno-miR-155-5p as well as rat Sestrin-3 mRNA and protein expression were partly dependent on oxidative stress induced by H2O2 in PC12 cells. Taken together, our data suggest that rno-miR-155-5p is a potent post-transcriptional regulator of rat Sestrin-3 and it may be one of the molecular links between brain damage and increased risk for seizures during damage by oxidative stress. PMID: 29191771 [PubMed - as supplied by publisher]
Source: Brain Research - Category: Neurology Authors: Tags: Brain Res Source Type: research