BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation

Nature advance online publication 08 November 2017. doi:10.1038/nature24294 Authors: Simon Raffel, Mattia Falcone, Niclas Kneisel, Jenny Hansson, Wei Wang, Christoph Lutz, Lars Bullinger, Gernot Poschet, Yannic Nonnenmacher, Andrea Barnert, Carsten Bahr, Petra Zeisberger, Adriana Przybylla, Markus Sohn, Martje Tönjes, Ayelet Erez, Lital Adler, Patrizia Jensen, Claudia Scholl, Stefan Fröhling, Sibylle Cocciardi, Patrick Wuchter, Christian Thiede, Anne Flörcken, Jörg Westermann, Gerhard Ehninger, Peter Lichter, Karsten Hiller, Rüdiger Hell, Carl Herrmann, Anthony D. Ho, Jeroen Krijgsveld, Bernhard Radlwimmer & Andreas Trumpp The branched-chain amino acid (BCAA) pathway and high levels of BCAA transaminase 1 (BCAT1) have recently been associated with aggressiveness in several cancer entities. However, the mechanistic role of BCAT1 in this process remains largely uncertain. Here, by performing high-resolution proteomic analysis of human acute myeloid leukaemia (AML) stem-cell and non-stem-cell populations, we find the BCAA pathway enriched and BCAT1 protein and transcripts overexpressed in leukaemia stem cells. We show that BCAT1, which transfers α-amino groups from BCAAs to α-ketoglutarate (αKG), is a critical regulator of intracellular αKG homeostasis. Further to its role in the tricarboxylic acid cycle, αKG is an essential cofactor for αKG-dependent dioxygenases such as Egl-9 family hypoxia inducible factor 1 (EGLN1) and the ten-eleven translocation (TET) famil...
Source: Nature AOP - Category: Research Authors: Tags: Letter Source Type: research