High-vacuum Optical Platform for cryo-CLEM (HOPE): a New Solution for Non-integrated Multiscale Correlative Light and Electron Microscopy

Publication date: Available online 4 November 2017 Source:Journal of Structural Biology Author(s): Shuoguo Li, Gang Ji, Yang Shi, Lasse Hyldgaard Klausen, Tongxin Niu, Shengliu Wang, Xiaojun Huang, Wei Ding, Xiang Zhang, Mingdong Dong, Wei Xu, Fei Sun Cryo-correlative light and electron microscopy (cryo-CLEM) offers a unique way to analyze the high-resolution structural information of cryo-vitrified specimen by cryo-electron microscopy (cryo-EM) with the guide of the search for unique events by cryo-fluorescence microscopy (cryo-FM). To achieve cryo-FM, a trade-off must be made between the temperature and performance of objective lens. The temperature of specimen should be kept below devitrification while the distance between the objective lens and specimen should be short enough for high resolution imaging. Although special objective lens was designed in many current cryo-FM approaches, the unavoided frosting and ice contamination are still affecting the efficiency of cryo-CLEM. In addition, the correlation accuracy between cryo-FM and cryo-EM would be reduced during the current specimen transfer procedure. Here, we report an improved cryo-CLEM technique (high-vacuum optical platform for cryo-CLEM, HOPE) based on a high-vacuum optical stage and a commercial cryo-EM holder. The HOPE stage comprises of a special adapter to suit the cryo-EM holder and a high-vacuum chamber with an anti-contamination system. It provides a clean and enduring environment for cryo spe...
Source: Journal of Structural Biology - Category: Biology Source Type: research