Resveratrol Attenuates the Cytotoxicity Induced by Amyloid- β1-42 in PC12 Cells by Upregulating Heme Oxygenase-1 via the PI3K/Akt/Nrf2 Pathway.

Resveratrol Attenuates the Cytotoxicity Induced by Amyloid-β1-42 in PC12 Cells by Upregulating Heme Oxygenase-1 via the PI3K/Akt/Nrf2 Pathway. Neurochem Res. 2017 Oct 31;: Authors: Hui Y, Chengyong T, Cheng L, Haixia H, Yuanda Z, Weihua Y Abstract Oxidative stress and cytotoxic damage induced by amyloid beta (Aβ) have been considered pivotal in the pathogenesis of Alzheimer's disease (AD) and may represent a target for treatment. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway elicits a survival signal to protect against multiple injuries, and the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), a downstream target of the PI3K/Akt pathway, can bind to HO-1. Resveratrol, a natural polyphenol derived from grapes, has been widely reported to have diverse antioxidative effects against AD, but the mechanisms have not been fully elucidated. The present study aims to investigate the effects of resveratrol on Aβ1-42-induced cytotoxicity in PC12 cells and to explore the potential mechanisms of these effects. PC12 cells were cultured and treated with Aβ1-42. Oxidative stress was assessed by measuring malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) levels. After treating with resveratrol at different concentrations (0, 10, 20, 40 μM) and for different durations (24, 48, 72 h), the generation of MDA, GSH, and SOD were detected; cell viability was assessed by MTT assay. The production o...
Source: Neurochemical Research - Category: Neuroscience Authors: Tags: Neurochem Res Source Type: research