A Comprehensive Computational Analysis of Mycobacterium Genomes Pinpoints the Genes Co-occurring with YczE, a Membrane Protein Coding Gene Under the Putative Control of a MocR, and Predicts its Function

AbstractBacterial proteins belonging to the YczE family are predicted to be membrane proteins of yet unknown function. In many bacterial species, theyczE gene coding for the YczE protein is divergently transcribed with respect to an adjacent transcriptional regulator of the MocR family. According to in silico predictions, proteins named YczR are supposed to regulate the expression ofyczE genes. These regulators linked to theyczE genes are predicted to constitute a subfamily within the MocR family. To put forward hypotheses amenable to experimental testing about the possible function of the YczE proteins, a phylogenetic profile strategy was applied. This strategy consists in searching for those genes that, within a set of genomes, co-occur exclusively with a certain gene of interest. Co-occurrence can be suggestive of a functional link. A set of 30 mycobacterial complete proteomes were collected. Of these, only 16 contained YczE proteins. Interestingly, in all cases eachyczE gene was divergently transcribed with respect to ayczR gene. Two orthology clustering procedures were applied to find proteins co-occurring exclusively with the YczE proteins. The reported results suggest that YczE may be involved in the membrane translocation and metabolism of sulfur-containing compounds mostly in rapidly growing, low pathogenicity mycobacterial species. These observations may hint at potential targets for therapies to treat the emerging opportunistic infections provoked by the widespread...
Source: Interdisciplinary Sciences, Computational Life Sciences - Category: Bioinformatics Source Type: research