A new mutation-independent approach to cancer therapy: Inhibiting oncogenic RAS and MYC, by targeting mitochondrial biogenesis.

A new mutation-independent approach to cancer therapy: Inhibiting oncogenic RAS and MYC, by targeting mitochondrial biogenesis. Aging (Albany NY). 2017 Oct 27;: Authors: Ozsvari B, Sotgia F, Lisanti MP Abstract Here, we used MCF7 cells as a model system to interrogate how MYC/RAS co-operativity contributes to metabolic flux and stemness in breast cancer cells. We compared the behavior of isogenic MCF7 cell lines transduced with c-Myc or H-Ras (G12V), either individually or in combination. Cancer stem cell (CSC) activity was measured using the mammosphere assay. c-Myc augmented both mammosphere formation and mitochondrial respiration, without any effects on glycolytic flux. In contrast, H-Ras (G12V) synergistically augmented both mammosphere formation and glycolysis, but only in combination with c-Myc, directly demonstrating MYC/RAS co-operativity. As c-Myc is known to exert its effects, in part, by stimulating mitochondrial biogenesis, we next examined the effects of another stimulus known to affect mitochondrial biogenesis, i.e. ROS production. To pharmacologically induce oxidative stress, we used Rotenone (a mitochondrial inhibitor) to target mitochondrial complex I. Treatment with Rotenone showed bi-phasic effects; low-dose Rotenone (1 to 2.5 nM) elevated mammosphere formation, while higher doses (10 to 100 nM) were inhibitory. Importantly, the stimulatory effects of Rotenone on CSC propagation were blocked using a mitochondrial-s...
Source: Aging - Category: Biomedical Science Authors: Tags: Aging (Albany NY) Source Type: research