[Research Articles] Inhibition of pyruvate dehydrogenase kinase improves pulmonary arterial hypertension in genetically susceptible patients

We report an increase in pyruvate dehydrogenase kinase (PDK), an inhibitor of the mitochondrial enzyme pyruvate dehydrogenase (PDH, the gatekeeping enzyme of glucose oxidation) in the PAs of human PAH compared to healthy lungs. Treatment of explanted human PAH lungs with the PDK inhibitor dichloroacetate (DCA) ex vivo activated PDH and increased mitochondrial respiration. In a 4-month, open-label study, DCA (3 to 6.25 mg/kg b.i.d.) administered to patients with idiopathic PAH (iPAH) already on approved iPAH therapies led to reduction in mean PA pressure and pulmonary vascular resistance and improvement in functional capacity, but with a range of individual responses. Lack of ex vivo and clinical response was associated with the presence of functional variants of SIRT3 and UCP2 that predict reduced protein function. Impaired function of these proteins causes PDK-independent mitochondrial suppression and pulmonary hypertension in mice. This first-in-human trial of a mitochondria-targeting drug in iPAH demonstrates that PDK is a druggable target and offers hemodynamic improvement in genetically susceptible patients, paving the way for novel precision medicine approaches in this disease.
Source: Science Translational Medicine - Category: Biomedical Science Authors: Tags: Research Articles Source Type: research