TGF-{beta} receptor I/II trafficking and signaling at primary cilia are inhibited by ceramide to attenuate cell migration and tumor metastasis

Signaling by the transforming growth factor–β (TGF-β) receptors I and II (TβRI/II) and the primary cilia-localized sonic hedgehog (Shh) pathway promote cell migration and, consequently, tumor metastasis. In contrast, the sphingolipid ceramide inhibits cell proliferation and tumor metastasis. We investigated whether ceramide metabolism inhibited TβRI/II trafficking to primary cilia to attenuate cross-talk between TβRI/II and the Shh pathway. We found that ceramide synthase 4 (CerS4)–generated ceramide stabilized the association between TβRI and the inhibitory factor Smad7, which limited the trafficking of TβRI/II to primary cilia. Expression of a mutant TβRI that signals but does not interact with Smad7 prevented the CerS4-mediated inhibition of migration in various cancer cells. Genetic deletion or knockdown of CerS4 prevented the formation of the Smad7-TβRI inhibitory complex and increased the association between TβRI and the transporter Arl6 through a previously unknown cilia-targeting signal (Ala31Thr32Ala33Leu34Gln35) in TβRI. Mutating the cilia-targeting signal abolished the trafficking of TβRI to the primary cilia. Localization of TβRI to primary cilia activated a key mediator of Shh signaling, Smoothened (Smo), which stimulated cellular migration and invasion. TβRI-Smo cross-talk at the cilia in CerS4-deficient 4T1 mammary cancer cells induced liver metastasis from orthotopic allografts i...
Source: Signal Transduction Knowledge Environment - Category: Science Authors: Tags: STKE Research Articles Source Type: news