Sequential proton boost after standard chemoradiation for high-grade glioma.

CONCLUSION: Delivering a proton boost to significantly smaller target volumes when compared to photon-only plans, yielded comparable progression and survival rates at lower CTCAE grade 3 acute toxicity rates. Pseudoprogression occurred rarely and evenly distributed in both treatment groups. Thus, bimodality RT was at least equivalent regarding outcome and potentially superior with respect to toxicity in patients with HGG. SUMMARY: Treating patients with HGG with 50.0 Gy photons in 2.0 Gy fractions, followed by a proton boost with 10 Gy(RBE) in 2.0 Gy(RBE) fractions, is safe and feasible. Severe radiation-induced acute toxicity and pseudoprogression were rare in both treatment groups. Therefore, in this clinical setting, combined proton radiotherapy might be beneficial in terms of further risk reduction for treatment-related side effects. Interestingly, treatment volume reduction using a proton boost led to comparable survival and progression rates with decreased severe treatment-related toxicity compared to conventional photon radiotherapy. PMID: 29050959 [PubMed - as supplied by publisher]
Source: Radiotherapy and Oncology : journal of the European Society for Therapeutic Radiology and Oncology - Category: Radiology Authors: Tags: Radiother Oncol Source Type: research