Artificial Selection to Increase the Phenotypic Variance in gmax Fails.

Artificial Selection to Increase the Phenotypic Variance in gmax Fails. Am Nat. 2017 Nov;190(5):707-723 Authors: Sztepanacz JL, Blows MW Abstract Stabilizing selection is important in evolutionary theories of the maintenance of genetic variance and has been invoked as the key process determining macroevolutionary patterns of trait evolution. However, manipulative evidence for the extent of stabilizing selection, particularly on multivariate traits, is lacking. We used artificial disruptive selection in Drosophila serrata as a tool to determine the relative strength of stabilizing selection experienced by multivariate trait combinations with contrasting levels of genetic and mutational variance. Contrary to expectation, when disruptive selection was applied to the major axis of standing genetic variance, gmax, we observed a significant and repeatable decrease in its phenotypic variance. In contrast, the multivariate trait combination predicted to be under strong stabilizing selection showed a significant and repeatable increase in its phenotypic variance. Correlated responses were observed in all selection treatments, and viability selection operating on extreme phenotypes of traits genetically correlated with those directly selected on limited our ability to increase their phenotypic range. Our manipulation revealed that multivariate trait combinations were subject to stabilizing selection; however, we did not observe a direct relati...
Source: The American Naturalist - Category: Biology Authors: Tags: Am Nat Source Type: research
More News: Biology | Genetics