Characterization of a set of abdominal neuroendocrine cells that regulate stress physiology using colocalized diuretic peptides in Drosophila.

Characterization of a set of abdominal neuroendocrine cells that regulate stress physiology using colocalized diuretic peptides in Drosophila. Cell Mol Life Sci. 2017 Oct 17;: Authors: Zandawala M, Marley R, Davies SA, Nässel DR Abstract Multiple neuropeptides are known to regulate water and ion balance in Drosophila melanogaster. Several of these peptides also have other functions in physiology and behavior. Examples are corticotropin-releasing factor-like diuretic hormone (diuretic hormone 44; DH44) and leucokinin (LK), both of which induce fluid secretion by Malpighian tubules (MTs), but also regulate stress responses, feeding, circadian activity and other behaviors. Here, we investigated the functional relations between the LK and DH44 signaling systems. DH44 and LK peptides are only colocalized in a set of abdominal neurosecretory cells (ABLKs). Targeted knockdown of each of these peptides in ABLKs leads to increased resistance to desiccation, starvation and ionic stress. Food ingestion is diminished by knockdown of DH44, but not LK, and water retention is increased by LK knockdown only. Thus, the two colocalized peptides display similar systemic actions, but differ with respect to regulation of feeding and body water retention. We also demonstrated that DH44 and LK have additive effects on fluid secretion by MTs. It is likely that the colocalized peptides are coreleased from ABLKs into the circulation and act on the tubules wh...
Source: Cellular and Molecular Life Sciences : CMLS - Category: Cytology Authors: Tags: Cell Mol Life Sci Source Type: research