Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity

Neuronal inclusions of aggregated RNA-binding protein fused in sarcoma (FUS) are hallmarks of ALS and frontotemporal dementia subtypes. Intriguingly, FUS's nearly uncharged, aggregation-prone, yeast prion-like, low sequence-complexity domain (LC) is known to be targeted for phosphorylation. Here we map in vitro and in-cell phosphorylation sites across FUS LC. We show that both phosphorylation and phosphomimetic variants reduce its aggregation-prone/prion-like character, disrupting FUS phase separation in the presence of RNA or salt and reducing FUS propensity to aggregate. Nuclear magnetic resonance spectroscopy demonstrates the intrinsically disordered structure of FUS LC is preserved after phosphorylation; however, transient domain collapse and self-interaction are reduced by phosphomimetics. Moreover, we show that phosphomimetic FUS reduces aggregation in human and yeast cell models, and can ameliorate FUS-associated cytotoxicity. Hence, post-translational modification may be a mechanism by which cells control physiological assembly and prevent pathological protein aggregation, suggesting a potential treatment pathway amenable to pharmacologic modulation.
Source: EMBO Journal - Category: Molecular Biology Authors: Tags: Neuroscience, Protein Biosynthesis & Quality Control Articles Source Type: research

Related Links:

FUS and EWSR1 are RNA-binding proteins with prion-like domains (PrLDs) that aggregate in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The FUS and EWSR1 genes are also prone to chromosomal translocation events, which result in aberrant fusions between portions of the PrLDs of FUS and EWSR1 and the transcription factors CHOP and FLI. The resulting fusion proteins, FUS-CHOP and EWS-FLI, drive aberrant transcriptional programs that underpin liposarcoma and Ewing's sarcoma, respectively. The translocated PrLDs alter the expression profiles of these proteins and promote their phase separation and aggreg...
Source: Journal of Biological Chemistry - Category: Chemistry Authors: Tags: Protein Structure and Folding Source Type: research
Abstract Coding or non-coding mutations in FUS (fused in sarcoma) cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In addition to familial ALS, abnormal aggregates of FUS are present in a portion of FTD and other neurodegenerative diseases independent of their mutations. Broad expression within the central nervous system of either wild-type or two ALS-linked human FUS mutants produces progressive motor phenotypes accompanied by characteristic ALS-like pathology. FUS levels are autoregulated to maintain an optimal steady-state level. Increasing FUS expression by saturating its autoregula...
Source: Autophagy - Category: Cytology Authors: Tags: Autophagy Source Type: research
Publication date: Available online 4 June 2019Source: Seminars in Cell &Developmental BiologyAuthor(s): Nicol Birsa, Matthew Peter Bentham, Pietro FrattaAbstractTAR DNA-binding protein of 43 kDa (TDP-43) and fused in sarcoma (FUS) are RNA binding proteins (RBPs) primarily located in the nucleus, and involved in numerous aspects of RNA metabolism. Both proteins can be found to be depleted from the nucleus and accumulated in cytoplasmic inclusions in two major neurodegenerative conditions, amyotrophic lateral sclerosis and frontotemporal dementia. Recent evidences suggest that, in addition to their nuclear functions, b...
Source: Seminars in Cell and Developmental Biology - Category: Cytology Source Type: research
In recent years, there has been a jarring awakening that liquid–liquid phase separation (LLPS) of key protein and nucleic acid scaffolds underpins the biogenesis of diverse membraneless organelles, including P granules and stress granules in the cytoplasm and nucleoli and paraspeckles in the nucleus. These biomolecular condensates are proposed to be critical organizers of subcellular biochemistry and to control the flow of information from genotype to phenotype. Despite clear biological utility, LLPS can also have deleterious outcomes. Phase-separated compartments can concentrate specific RNA-binding proteins (RBPs),...
Source: Journal of Biological Chemistry - Category: Chemistry Authors: Tags: JBC Reviews Source Type: research
Conclusion The key problem with the ND field is the lack of understanding in the events preceding the development of protein-based markers – such as Tau – currently used to diagnose NDs. By this stage, the diseases become more difficult to treat. SncRNAs play an important regulatory role in the maintenance of the homeostatic brain. Therefore, changes in their concentration levels can be indicative of mechanistic changes that could precede protein-based markers. One single sncRNA biomarker is unlikely to differentiate between diseases. However, a combination of sncRNA biomarkers could be illustrative of the me...
Source: Frontiers in Genetics - Category: Genetics & Stem Cells Source Type: research
This study was carried out in accordance with the recommendations of the National Animal Care and Use Committee of the University of Buenos Aires (CICUAL). The protocol was approved by the CICUAL. Mice were kept under a 12-h light/dark cycle, with controlled temperature (23 ± 2°C) and humidity (40–60%) and had ad libitum access to food and water. To produce hTDP-43 transgenic lines, as described previously (Igaz et al., 2011), pronucleus of fertilized eggs from C57BL/6J × C3HeJ F1 matings were injected with a vector containing hTDP-43-WT cDNA. Monogenic tetO-TDP-WT12 mice wer...
Source: Frontiers in Genetics - Category: Genetics & Stem Cells Source Type: research
You're reading A Wee Wiggle in my Journey to Family, originally posted on Pick the Brain | Motivation and Self Improvement. If you're enjoying this, please visit our site for more inspirational articles. Many of us have faced depression, struggled with low self-esteem, and other debilitating mental health challenges. My own journey with depression was a result of growing up with a rare blood disorder and being told I could never have children of my own. This completely changed my dreams of what family and life meant. Years later I suffered with a rare soft tissue sarcoma, yet, baffling the best of doctors, I survived. I&rs...
Source: PickTheBrain | Motivation and Self Improvement - Category: Consumer Health News Authors: Tags: depression featured psychology self improvement best books Donna Grant Wilcox faith family mental health pickthebrain Source Type: blogs
Publication date: Available online 24 November 2018Source: Biochimica et Biophysica Acta (BBA) - Molecular Basis of DiseaseAuthor(s): Junghee Lee, Phuong T. Nguyen, Hyun-Soo Shim, Seung Jae Hyeon, Hyeonjoo Im, Mi-Hyun Choi, Sooyoung Chung, Neil W. Kowall, Sean Bong Lee, Hoon RyuAbstractEwing's sarcoma (EWS) is a bone cancer arising predominantly in young children. EWSR1 (Ewing Sarcoma breakpoint region 1/EWS RNA binding protein 1) gene is ubiquitously expressed in most cell types, indicating it has diverse roles in various cellular processes and organ development. Recently, several studies have shown that missense mutation...
Source: Biochimica et Biophysica Acta (BBA) Molecular Basis of Disease - Category: Molecular Biology Source Type: research
Publication date: 24 July 2018Source: Cell Reports, Volume 24, Issue 4Author(s): Eva-Maria Hock, Zuzanna Maniecka, Marian Hruska-Plochan, Stefan Reber, Florent Laferrière, Sonu Sahadevan M.K., Helena Ederle, Lauren Gittings, Lucas Pelkmans, Luc Dupuis, Tammaryn Lashley, Marc-David Ruepp, Dorothee Dormann, Magdalini PolymenidouSummaryThe primarily nuclear RNA-binding protein FUS (fused in sarcoma) forms pathological cytoplasmic inclusions in a subset of early-onset amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients. In response to cellular stress, FUS is recruited to cytoplasmic stress gra...
Source: Cell Reports - Category: Cytology Source Type: research
Abstract TAR DNA-binding protein-43 KDa (TDP-43) and fused in sarcoma (FUS) as the defining pathological hallmarks for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), coupled with ALS-FTD-causing mutations in both genes, indicate that their dysfunctions damage the motor system and cognition. On the molecular level, TDP-43 and FUS participate in the biogenesis and metabolism of coding and noncoding RNAs as well as in the transport and translation of mRNAs as part of cytoplasmic mRNA-ribonucleoprotein (mRNP) granules. Intriguingly, many of the RNA targets of TDP-43 and FUS are involved ...
Source: Neural Plasticity - Category: Neurology Authors: Tags: Neural Plast Source Type: research
More News: Brain | Dementia | Neurology | Sarcomas | Sodium Chloride | Toxicology