Engineered chimeric peptides with antimicrobial and titanium-binding functions to inhibit biofilm formation on Ti implants.

Engineered chimeric peptides with antimicrobial and titanium-binding functions to inhibit biofilm formation on Ti implants. Mater Sci Eng C Mater Biol Appl. 2018 Jan 01;82:141-154 Authors: Geng H, Yuan Y, Adayi A, Zhang X, Song X, Gong L, Zhang X, Gao P Abstract Titanium (Ti) implants have been commonly used in oral medicine. However, despite their widespread clinical application, these implants are susceptible to failure induced by microbial infection due to bacterial biofilm formation. Immobilization of chimeric peptides with antibacterial properties on the Ti surface may be a promising antimicrobial approach to inhibit biofilm formation. Here, chimeric peptides were designed by connecting three sequences (hBD-3-1/2/3) derived from human β-defensin-3 (hBD-3) with Ti-binding peptide-l (TBP-l: RKLPDAGPMHTW) via a triple glycine (G) linker to modify Ti surfaces. Using X-ray photoelectron spectroscopy (XPS), the properties of individual domains of the chimeric peptides were evaluated for their binding activity toward the Ti surface. The antimicrobial and anti-biofilm efficacy of the peptides against initial settlers, Streptococcus oralis (S. oralis), Streptococcus gordonii (S. gordonii) and Streptococcus sanguinis (S. sanguinis), was evaluated with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Transmission electron microscopy (TEM) and real-time quantitative PCR (qRT-PCR) were used to study cell mem...
Source: Appl Human Sci - Category: Physiology Authors: Tags: Mater Sci Eng C Mater Biol Appl Source Type: research