The Trabecular Bone Score (TBS) Complements DXA and the FRAX as a Fracture Risk Assessment Tool in Routine Clinical Practice

AbstractPurpose of the reviewThere is an increasing body of evidence that the trabecular bone score (TBS), a surrogate of bone microarchitecture extracted from spine DXA, could play an important role in the management of patients with osteoporosis or at risk of fracture. The current paper reviews this published body of scientific literature on TBS and answers the most relevant clinical questions.Recent findingsTBS has repeatedly been proven to be predictive of fragility fractures, current and future, and this is largely independent of BMD, CRF, and the FRAX, and when used in conjunction with any one of these measures, it consistently enhances their accuracy. There also is a growing body of evidence indicating that the TBS has particular advantages over BMD for specific causes of increased fracture risk, like chronic corticosteroid excess, type-2 diabetes, and chronic kidney disease, and patients being treated with anti-aromatase and primary hyperparathyroidism, conditions wherein BMD readings are often misleading.SummaryTBS enhances performance of the FRAX tool, where its greatest utility appears to lie in its ability to accurately classify those patients whose BMD level lies close to the intervention threshold, aiding in decisions on whether treatment is warranted or not. Furthermore, TBS has also particular advantages over BMD in secondary osteoporosis. While the role of TBS with monitoring could be important as the different molecules impact logically TBS to various degree...
Source: Current Osteoporosis Reports - Category: Orthopaedics Source Type: research