Stroke and the Cell Therapy Saga: Towards a Safe, Swift and Efficient Utilization of cells.

Stroke and the Cell Therapy Saga: Towards a Safe, Swift and Efficient Utilization of cells. Keio J Med. 2017;66(3):55 Authors: Kubis N Abstract The first clinical trials of cell therapy in stroke were first published in the 2000s and consisted of neural stems cells transplanted via the intracerebral pathway. Since mesenchymal stem cells showed similar capacities to differentiate into neural cells and allowed autologous cell transplantation, they were then preferentially studied, including diabetes and hypertension. More recently, bone marrow derived mononuclear cells were successfully transplanted in stroke with no need of culture processing, and simple collection by density gradient centrifugation rendering them immediately ready for use. They improve post-stroke neurological deficit in rodents and clinical trials have shown the feasibility of intra-arterial or intravenous administration. The underlying mechanisms are not yet understood. We investigated the therapeutic potential of peripheral blood derived mononuclear cells (PB-MNC) harvested from diabetic patients and stimulated by ephrin-B2 (PB-MNC+). We showed that intravenously injected PB-MNC+ after cerebral ischemia reduced infarct volume at day 3, increased cell proliferation in the peri-infarct area and the subventricular zone, decreased microglial cell density, and upregulated TGF-β expression. At D14, microvessel density was increased and functional recovery enhanced, whereas plasma level...
Source: The Keio Journal of Medicine - Category: Universities & Medical Training Authors: Tags: Keio J Med Source Type: research

Related Links:

This study provides direct evidence for the contribution of gut microbiota to the cognitive decline during normal aging and suggests that restoring microbiota homeostasis in the elderly may improve cognitive function. On Nutraceutical Senolytics https://www.fightaging.org/archives/2020/05/on-nutraceutical-senolytics/ Nutraceuticals are compounds derived from foods, usually plants. In principle one can find useful therapies in the natural world, taking the approach of identifying interesting molecules and refining them to a greater potency than naturally occurs in order to produce a usefully large therape...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
This study delves into the mechanisms by which a short period of fasting can accelerate wound healing. Fasting triggers many of the same cellular stress responses, such as upregulated autophagy, as occur during the practice of calorie restriction. It isn't exactly the same, however, so it is always worth asking whether any specific biochemistry observed in either case does in fact occur in both situations. In particular, the period of refeeding following fasting appears to have beneficial effects that are distinct from those that occur while food is restricted. Multiple forms of therapeutic fasting have been repor...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In this study, we intravenously administrated the young mitochondria into aged mice to evaluate whether energy production increase in aged tissues or age-related behaviors improved after the mitochondrial transplantation. The results showed that heterozygous mitochondrial DNA of both aged and young mouse coexisted in tissues of aged mice after mitochondrial administration, and meanwhile, ATP content in tissues increased while reactive oxygen species (ROS) level reduced. Besides, the mitotherapy significantly improved cognitive and motor performance of aged mice. Our study, at the first report in aged animals, not only prov...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In conclusion, this study suggests that epigenetic age acceleration is significantly associated with lung function in women older than 50 years. We hypothesised that this could be due to menopause. However, we have observed that menopause has minimal effect and therefore there is possibility of other unknown physiological factors at older age in females mediating the epigenetic age acceleration effect on lung function. While, it is still unknown what exactly epigenetic aging from DNA methylation measures, this study suggests it can be utilised as one of the important factors to assess women's lung health in old age. DNA me...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
This study presents the effects of berberine (BBR) on the aging process resulting in a promising extension of lifespan in model organisms. BBR extended the replicative lifespan, improved the morphology, and boosted rejuvenation markers of replicative senescence in human fetal lung diploid fibroblasts. BBR also rescued senescent cells with late population doubling (PD). Furthermore, the senescence-associated β-galactosidase (SA-β-gal)-positive cell rates of late PD cells grown in the BBR-containing medium were ~72% lower than those of control cells, and its morphology resembled that of young cells. Mechanistically...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
This study shows that CA are released from periventricular and subpial regions to the cerebrospinal fluid and are present in the cervical lymph nodes, into which cerebrospinal fluid drains through the meningeal lymphatic system. We also show that CA can be phagocytosed by macrophages. We conclude that CA can act as containers that remove waste products from the brain and may be involved in a mechanism that cleans the brain. Moreover, we postulate that CA may contribute in some autoimmune brain diseases, exporting brain substances that interact with the immune system, and hypothesize that CA may contain brain markers that m...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Fight Aging! publishes news and commentary relevant to the goal of ending all age-related disease, to be achieved by bringing the mechanisms of aging under the control of modern medicine. This weekly newsletter is sent to thousands of interested subscribers. To subscribe or unsubscribe from the newsletter, please visit: https://www.fightaging.org/newsletter/ Longevity Industry Consulting Services Reason, the founder of Fight Aging! and Repair Biotechnologies, offers strategic consulting services to investors, entrepreneurs, and others interested in the longevity industry and its complexities. To find out m...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In conclusion, high-dose NR induces the onset of WAT dysfunction, which may in part explain the deterioration of metabolic health. Towards a Rigorous Definition of Cellular Senescence https://www.fightaging.org/archives/2019/11/towards-a-rigorous-definition-of-cellular-senescence/ The accumulation of lingering senescent cells is a significant cause of aging, disrupting tissue function and generating chronic inflammation throughout the body. Even while the first senolytic drugs capable of selectively destroying these cells already exist, and while a number of biotech companies are working on the productio...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In this study, the enhanced mice live somewhat longer than their unmodified peers, though not as much longer as is the case for the application of telomerase gene therapy. The mice do also exhibit reduced cancer risk, however. The scientists here class telomere shortening as a cause of aging, which is not a point universally agreed upon. Reductions in average telomere length in tissues looks much more like a downstream consequence of reduced stem cell activity than an independent mechanism. Researchers obtain the first mice born with hyper-long telomeres and show that it is possible to extend life without any geneti...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In conclusion, older adults exhibited decreased markers of UPR activation and reduced coordination with autophagy and SC-associated gene transcripts following a single bout of unaccustomed resistance exercise. In contrast, young adults demonstrated strong coordination between UPR genes and key regulatory gene transcripts associated with autophagy and SC differentiation in skeletal muscle post-exercise. Taken together, the present findings suggest a potential age-related impairment in the post-exercise transcriptional response that supports activation of the UPR and coordination with other exercise responsive pathways (i.e....
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
More News: Brain | Clinical Trials | Diabetes | Endocrinology | Genetics | Hypertension | Neurology | Stem Cell Therapy | Stem Cells | Stroke | Transplants