Segmentation of the inferior longitudinal fasciculus in the human brain: A white matter dissection and diffusion tensor tractography study.

Segmentation of the inferior longitudinal fasciculus in the human brain: A white matter dissection and diffusion tensor tractography study. Brain Res. 2017 Sep 09;: Authors: Latini F, Mårtensson J, Larsson EM, Fredrikson M, Åhs F, Hjortberg M, Aldskogius H, Ryttlefors M Abstract The inferior longitudinal fascicle (ILF) is one of the major occipital-temporal association pathways. Several studies have mapped its hierarchical segmentation to specific functions. There is, however, no consensus regarding a detailed description of ILF fibre organisation. The aim of this study was to establish whether the ILF has a constant number of subcomponents. A secondary aim was to determine the quantitative diffusion proprieties of each subcomponent and assess their anatomical trajectories and connectivity patterns. A white matter dissection of 14 post-mortem normal human hemispheres was conducted to define the course of the ILF and its subcomponents. These anatomical results were then investigated in 24 right-handed, healthy volunteers using in vivo diffusion tensor imaging (DTI) and streamline tractography. Fractional anisotropy (FA), volume, fibre length and the symmetry coefficient of each fibre group were analysed. In order to show the connectivity pattern of the ILF, we also conducted an analysis of the cortical terminations of each segment. We confirmed that the main structure of the ILF is composed of three constant components reflecting t...
Source: Brain Research - Category: Neurology Authors: Tags: Brain Res Source Type: research
More News: Brain | Fibre | Neurology | Study