The neuroprotective transcription factor ATF5 is decreased and sequestered into polyglutamine inclusions in Huntington ’s disease

AbstractActivating transcription factor-5 (ATF5) is a stress-response transcription factor induced upon different cell stressors like fasting, amino-acid limitation, cadmium or arsenite. ATF5 is also induced, and promotes transcription of anti-apoptotic target genes likeMCL1, during the unfolded protein response (UPR) triggered by endoplasmic reticulum stress. In the brain, high ATF5 levels are found in gliomas and also in neural progenitor cells, which need to decrease their ATF5 levels for differentiation into mature neurons or glia. This initially led to believe that ATF5 is not expressed in adult neurons. More recently, we reported basal neuronal ATF5 expression in adult mouse brain and its neuroprotective induction during UPR in a mouse model of status epilepticus. Here we aimed to explore whether ATF5 is also expressed by neurons in human brain both in basal conditions and in Huntington ’s disease (HD), where UPR has been described to be partially impaired due to defective ATF6 processing. Apart from confirming that ATF5 is present in human adult neurons, here we report accumulation of ATF5 within the characteristic polyglutamine-containing neuronal nuclear inclusions in brains o f HD patients and mice. This correlates with decreased levels of soluble ATF5 and of its antiapoptotic target MCL1. We then confirmed the deleterious effect of ATF5 deficiency in aCaenorhabditis elegans model of polyglutamine-induced toxicity. Finally, ATF5 overexpression attenuated polygluta...
Source: Acta Neuropathologica - Category: Neurology Source Type: research