Reassessing spin-coupled (full generalized valence bond) descriptions of ozone using three-center bond indices

Publication date: 15 September 2017 Source:Computational and Theoretical Chemistry, Volume 1116 Author(s): David L. Cooper, Fabio E. Penotti, Robert Ponec Domain-averaged Fermi hole analysis is carried out for the ground state of O3 at its equilibrium geometry using a complete-active-space self-consistent field CASSCF(18,14) wavefunction, based on a slightly expanded full-valence active space. This initial analysis is augmented with an examination of the corresponding localized natural orbitals (LNOs) and of the numerical values obtained with a new improved definition of three-center bond indices for correlated singlet systems. Much the same pattern of LNOs is observed when using instead a subsequent internally-contracted multiconfiguration-reference configuration interaction construction, which also provides very similar values for the three-center bond indices. This gives us confidence to use such bond indices, alongside relative energies and the electric dipole moment, to assess the relative merits of various combinations of spin-coupled (full generalized valence bond) components with ten active electrons: four π, four σ bonding and the two nonbonding σ electrons associated with the central O atom. These multi-component valence bond descriptions were generated either with or without subsequent orbital reoptimization. The description of the π system which emerges from all of our analysis conforms to a standard model of three-center four-electron π bonding that inc...
Source: Computational and Theoretical Chemistry - Category: Chemistry Source Type: research
More News: Chemistry