Influences of migration phenology on survival are size-dependent in juvenile Atlantic salmon (Salmo salar)

Canadian Journal of Zoology, e-First Articles. Long-distance migratory species can reduce mortality risks by synchronizing the migration event and create confusion by swamping predators with high densities. To reduce confusion, predators are known to primarily select aberrant prey. We hypothesized that at the start of their sea sojourn, particularly small and large Atlantic salmon (Salmo salar L., 1758) would spread the risk by also migrating at other times of the year. Based on data from the Norwegian river Imsa between 1976 and 2015, we found that juveniles, 14 –19 cm in total length, started their sea sojourn during a short period between late April and early June. However, more than 20% of fish 13 cm or shorter migrated downstream between October and March, whereas 55% of fish 20 cm or longer migrated downstream between July and September. The regular- sized, spring-migrating juveniles had 2–3 times higher survival at sea than similar-sized conspecifics migrating to sea at other times of the year. The survival at sea for smaller juveniles was not improved by migration in spring relative to winter, and the survival of the largest juveniles was si milar in spring and summer. Thus, the migration phenology appears adapted to survival in a high-risk environment by changing the timing according to their sizes.
Source: Canadian Journal of Zoology - Category: Zoology Authors: Source Type: research