Left-Right Patterning: Breaking Symmetry to Asymmetric Morphogenesis.

Left-Right Patterning: Breaking Symmetry to Asymmetric Morphogenesis. Trends Genet. 2017 Jul 15;: Authors: Grimes DT, Burdine RD Abstract Vertebrates exhibit striking left-right (L-R) asymmetries in the structure and position of the internal organs. Symmetry is broken by motile cilia-generated asymmetric fluid flow, resulting in a signaling cascade - the Nodal-Pitx2 pathway - being robustly established within mesodermal tissue on the left side only. This pathway impinges upon various organ primordia to instruct their side-specific development. Recently, progress has been made in understanding both the breaking of embryonic L-R symmetry and how the Nodal-Pitx2 pathway controls lateralized cell differentiation, migration, and other aspects of cell behavior, as well as tissue-level mechanisms, that drive asymmetries in organ formation. Proper execution of asymmetric organogenesis is critical to health, making furthering our understanding of L-R development an important concern. PMID: 28720483 [PubMed - as supplied by publisher]
Source: Trends in Genetics : TIG - Category: Genetics & Stem Cells Authors: Tags: Trends Genet Source Type: research
More News: Genetics