A hybrid phantom Monte Carlo-based method for historical reconstruction of organ doses in patients treated with cobalt-60 for Hodgkin's lymphoma.

In this study, a computational model and experimental validation of the Theratron T-1000 are presented. Model validation is based upon in-field commissioning data collected at the University of Florida, published out-of-field data from the British Journal of Radiology (BJR) Supplement 25, and out-of-field measurements performed at the University of Wisconsin's Accredited Dosimetry Calibration Laboratory (UWADCL). The computational model of the Theratron T-1000 agrees with central axis percentage depth dose data to within 2% for 6  ×  6 to 30  ×  30 cm(2) fields. Out-of-field doses were found to vary between 0.6% to 2.4% of central axis dose at 10 cm from field edge and 0.42% to 0.97% of central axis dose at 20 cm from the field edge, all at 5 cm depth. Absolute and relative differences between computed and measured out-of-field doses varied between  ±2.5% and  ±100%, respectively, at distances up to 60 cm from the central axis. The source-term model was subsequently combined with patient-morphometry matched computational hybrid phantoms as a method for estimating in-field and out-of-field organ doses for patients treated for Hodgkin's Lymphoma. By changing field size and position, and adding patient-specific field shaping blocks, more complex historical treatment set-ups can be to recreated, particularly those for which 2D or 3D image sets are unavailable. PMID: 28714462 [PubMed - in process]
Source: Physics in Medicine and Biology - Category: Physics Authors: Tags: Phys Med Biol Source Type: research