Log in to search using one of your social media accounts:

 

Ubiquitination at the mitochondria in neuronal health and disease

Publication date: Available online 12 July 2017 Source:Neurochemistry International Author(s): Christian Covill-Cooke, Jack Howden, Nicol Birsa, Josef Kittler The preservation of mitochondrial function is of particular importance in neurons given the high energy requirements of action potential propagation and synaptic transmission. Indeed, disruptions in mitochondrial dynamics and quality control are linked to cellular pathology in neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. Here, we will discuss the role of ubiquitination by the E3 ligases: Parkin, MARCH5 and Mul1, and how they regulate mitochondrial homeostasis. Furthermore, given the role of Parkin and Mul1 in the formation of mitochondria-derived vesicles we give an overview of this area of mitochondrial homeostasis. We highlight how through the activity of these enzymes and MDV formation, multiple facets of mitochondrial biology can be regulated, ensuring the functionality of the mitochondrial network thus preserving neuronal health.
Source: Neurochemistry International - Category: Neuroscience Source Type: research

Related Links:

Authors: He YE, Qiu HX, Jiang JB, Wu RZ, Xiang RL, Zhang YH Abstract The aim of the present study was to identify key genes that may be involved in the pathogenesis of Tetralogy of Fallot (TOF) using bioinformatics methods. The GSE26125 microarray dataset, which includes cardiovascular tissue samples derived from 16 children with TOF and five healthy age‑matched control infants, was downloaded from the Gene Expression Omnibus database. Differential expression analysis was performed between TOF and control samples to identify differentially expressed genes (DEGs) using Student's t‑test, and the R/limma package, ...
Source: Molecular Medicine Reports - Category: Molecular Biology Tags: Mol Med Rep Source Type: research
In conclusion, the analyses do not permit us to predict the trajectory that maximum lifespans will follow in the future, and hence provide no support for their central claim that the maximum lifespan of humans is "fixed and subject to natural constraints". This is largely a product of the limited data available for analysis, owing to the challenges inherent in collecting and verifying the lifespans of extremely long-lived individuals. A reply from Jan Vijg's research group The authors of the accompanying comment disagree with our finding of a limit to human lifespan. Although we thank them for a...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Fight Aging! provides a weekly digest of news and commentary for thousands of subscribers interested in the latest longevity science: progress towards the medical control of aging in order to prevent age-related frailty, suffering, and disease, as well as improvements in the present understanding of what works and what doesn't work when it comes to extending healthy life. Expect to see summaries of recent advances in medical research, news from the scientific community, advocacy and fundraising initiatives to help speed work on the repair and reversal of aging, links to online resources, and much more. This content is...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
This study is the first to show that downregulation of PAPP-A expression in adult mice can significantly extend life span. Importantly, this beneficial longevity phenotype is distinct from the dwarfism of long-lived PAPP-A KO, Ames dwarf, Snell dwarf and growth hormone receptor (GHR) KO mice with germ-line mutations. Thus, downregulation of PAPP-A expression joins other treatment regimens, such as resveratrol, rapamycin and dietary restriction, which can extend life span when started in mice as adults. In a recent study, inducible knockdown of the GHR in young adult female mice increased maximal, but not median, lif...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In this study, we focused on two pathways of cardiomyocytes or heart cells: the Hippo pathway, which is involved in stopping renewal of adult cardiomyocytes, and the dystrophin glycoprotein complex (DGC) pathway, essential for cardiomyocyte normal functions." Previous work had hinted that components of the DGC pathway may somehow interact with members of the Hippo pathway. The researchers genetically engineered mice to lack genes involved in one or both pathways, and then determined the ability of the heart to repair an injury. These studies showed for the first time that dystroglycan 1, a component of the DGC ...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Fight Aging! provides a weekly digest of news and commentary for thousands of subscribers interested in the latest longevity science: progress towards the medical control of aging in order to prevent age-related frailty, suffering, and disease, as well as improvements in the present understanding of what works and what doesn't work when it comes to extending healthy life. Expect to see summaries of recent advances in medical research, news from the scientific community, advocacy and fundraising initiatives to help speed work on the repair and reversal of aging, links to online resources, and much more. This content is...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
The Life Extension Advocacy Foundation (LEAF) volunteers caught up with Aubrey de Grey of the SENS Research Foundation at the recent International Longevity and Cryopreservation Summit held in Spain, and hence the publication of the high level view of current progress in SENS rejuvenation research that I'll point out today. The conference was an opportunity for members the overlapping European communities focused on longevity science, cryonics, and transhumanism to present their work, build their networks, and plan future initiatives. When it comes to longevity, the SENS research program looms large: its focus on repair of...
Source: Fight Aging! - Category: Research Authors: Tags: Healthy Life Extension Community Source Type: blogs
ina A Abstract The Voltage Dependent Anion Channel (VDAC) proteins represent the most important pore-forming proteins of the mitochondrial outer membrane, directly involved in metabolism and apoptosis regulation. The recent literature has highlighted a key role of VDACs in mitochondrial dysfunction typical of many neurodegenerative disorders. In particular, the principal isoform VDAC1 represents the main mitochondrial docking site of many misfolded proteins, such as amyloid β and Tau in Alzheimer's disease, α-synuclein in Parkinson's disease and several SOD1 mutants in Amyotrophic Lateral Sclerosis. The...
Source: Current Medicinal Chemistry - Category: Chemistry Authors: Tags: Curr Med Chem Source Type: research
In this study, we utilized an imaging-based assay to monitor the ability of disease-associated amyloid assemblies to rupture intracellular vesicles following endocytosis. We observe that the ability to induce vesicle rupture is a common feature of α-synuclein (α-syn) assemblies, as assemblies derived from wild type (WT) or familial disease-associated mutant α-syn all exhibited the ability to induce vesicle rupture. Similarly, different conformational strains of WT α-syn assemblies, but not monomeric or oligomeric forms, efficiently induced vesicle rupture following endocytosis. The ability to...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Conclusion: The preliminary data suggests that the reduced cell environment is not the primary factor driving dissociation of the complex; it is rather endogenous copper demand driven by complex physiological processes including oxidative stress, and cell growth. Further studies are planned to investigate the primary mechanism by which Cu-ATSM releases the tracer to cells, providing an imaging signal reflective of cellular pathology in multiple disease states. Research Support: 2 P01 CA042045
Source: Journal of Nuclear Medicine - Category: Nuclear Medicine Authors: Tags: Radiopharmacy Posters Source Type: research
More News: Alzheimer's | Biology | Brain | Mitochondria | Mitochondrial Disease | Neurology | Neuroscience | Parkinson's Disease | Pathology