Characterization of the oligomeric states of the CK2 {alpha}2{beta}2 holoenzyme in solution

The regulatory mechanism of protein kinase CK2 has still to be fully clarified. The prevailing hypothesis is that CK2 is controlled by a self-polymerisation mechanism leading to inactive supramolecular assemblies that, when needed, can be disassembled into the α2β2 monomer, the active form of the holoenzyme. In vitro, monomeric α2β2 seems present only at high ionic strengths, typically 0.35–0.50 M NaCl, while at lower salt concentrations oligomers are formed. In the present study, size-exclusion chromatography (SEC), dynamic light scattering (DLS), small-angle X-ray scattering (SAXS) and mutagenesis have been employed for the characterization of the oligomeric states of CK2 in solution. SAXS measurements at 0.35 M NaCl show for the first time the shape of the α2β2 active monomer in solution. At 0.25 M salt, despite single average properties indicating an aggregated holoenzyme, deconvolution analysis of SAXS data reveals an equilibrium involving not only circular trimeric and linear oligomeric (3–4 units) forms of α2β2, but also considerable amounts of the monomer. Together SAXS and mutagenesis confirm the presence in solution of the oligomers deduced by crystal structures. The lack of intermediate species such as αβ2, α or β2 indicates that the holoenzyme is a strong complex that does not spontaneously dissociate, challenging what was recently proposed on the basis of mass spectrometr...
Source: Biochemical Journal - Category: Biochemistry Authors: Tags: Research Articles Source Type: research