β1- and β2-adrenergic receptor stimulation differ in their effects on PGC-1α and atrogin-1/MAFbx gene expression in chick skeletal muscle

In this study, the effects of intraperitoneal injection of adrenaline and three β1–3-AR selective agonists on chick skeletal muscle metabolism were examined, to evaluate the functions of β-AR subtypes. Adrenaline decreased atrogin-1/MAFbx mRNA levels accompanied by an increase in PGC-1α mRNA and protein levels. However, among the three selective agonists, only the β1-AR agonist, dobutamine, increased PGC-1α mRNA and protein levels, while the β2-AR agonist, clenbuterol, suppressed atrogin-1/MAFbx mRNA levels. In addition, preinjection of the β1-AR antagonist, acebutolol, and the β2-AR antagonist, butoxamine, inhibited the adrenaline-induced increase in PGC-1α mRNA levels and the decrease in atrogin-1/MAFbx mRNA levels, respectively. Compared with adrenaline administration, the β3-AR agonist, BRL37344, decreased PGC-1α mRNA levels and increased atrogin-1/MAFbx mRNA levels. These results suggest that, in chick skeletal muscle, PGC-1α is induced via the β1-AR, while atrogin-1/MAFbx is suppressed via the β2-AR.
Source: Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology - Category: Biochemistry Source Type: research