Chronic Administration of S-Allylcysteine Activates Nrf2 Factor and Enhances the Activity of Antioxidant Enzymes in the Striatum, Frontal Cortex and Hippocampus.

Chronic Administration of S-Allylcysteine Activates Nrf2 Factor and Enhances the Activity of Antioxidant Enzymes in the Striatum, Frontal Cortex and Hippocampus. Neurochem Res. 2017 Jun 24;: Authors: Franco-Enzástiga Ú, Santana-Martínez RA, Silva-Islas CA, Barrera-Oviedo D, Chánez-Cárdenas ME, Maldonado PD Abstract Oxidative stress plays an important role in neurodegenerative diseases and aging. The cellular defense mechanisms to deal with oxidative damage involve the activation of transcription factor related to NF-E2 (Nrf2), which enhances the transcription of antioxidant and phase II enzyme genes. S-allylcysteine (SAC) is an antioxidant with neuroprotective properties, and the main organosulfur compound in aged garlic extract. The ability of SAC to activate the Nrf2 factor has been previously reported in hepatic cells; however this effect has not been studied in normal brain. In order to determine if the chronic administration of SAC is able to activate Nrf2 factor and enhance antioxidant defense in the brain, male Wistar rats were administered with SAC (25, 50, 100 and 200 mg/kg-body weight each 24 h, i.g.) for 90 days. The activation of Nrf2, the levels of p65 and 8-hydroxy-2-deoxyguanosine (8-OHdG) as well as the activities of the enzymes glutathione peroxidase (GPx), glutathione reductase (GR), catalase (CAT), superoxide dismutase (SOD), and glutathione S-transferase (GST) were evaluated in the hippocampus, striatum and...
Source: Neurochemical Research - Category: Neuroscience Authors: Tags: Neurochem Res Source Type: research