Ultrastructure of bioscaffolds derived from bovine articular cartilage as an experimental model to support blastema cells

AbstractDecellularized cartilage extracellular matrix (ECM)-derived bioscaffolds have been designed as they provide a unique opportunity to carry out research on the mechanisms of chondrogenesis and its regulation. These scaffolds are used as a model in order to emulate different aspects relating to the formation, degeneration, and regeneration of the cartilage. This project has studied the interaction between the decellularized bovine articular cartilage and the blastema cells derived from the punched rabbit ’s ear. Articular cartilage was dissected in fragments with 10 mm length and 2 mm thickness. Then, they were chemically decellularized with 2% sodium dodecyl sulfate (SDS) for 2 h. The tissue rings derived from the rabbit’s ear were assembled with the decellularized scaffolds and they were pl aced in a culture media for 30 days. These samples were fixed, sectioned, and microscopically studied. Micrographs of SEM electron microscopy and DAPI staining confirmed the decellularization of the scaffolds. FTIR analysis confirmed the preservation of ECM components including collagen II and prot eoglycans. The optical microscopy observations confirmed migration, adherence, and penetration of the blastema cells into the scaffolds. The electron microscopy studies demonstrated that the blastema cells beside the scaffolds have triggered mutual interactions and merely progressed toward chondroge nic differentiation. The main objective is to identify and comprehend the interact...
Source: Comparative Clinical Pathology - Category: Pathology Source Type: research
More News: Chemistry | Pathology | Study