Assessment of the Probability of Autochthonous Transmission of Chikungunya Virus in Canada under Recent and Projected Climate Change

This study identifies that southern Canada may be the very northern limit for transmission of these pathogens with climate change. Other factors need to be explored however, which include understanding when and where Canadian travelers are likely to return, infrastructure in Canada that may support vector populations in what would be expected to be climatically unsuitable regions, and whether or not there are other competent vectors in Canada. Further research to close the gap on our current understanding of CHIKV and CHIKV vectors, improved surveillance on Ae. albopictus in North America, and enhanced climate projection models (using model ensembles) will allow us to better predict the current and future risk of transmission of CHIKV and other exotic vector-borne pathogens in Canada. Acknowledgments We would like to thank L. Sushama and K. Winger [Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER), Université du Québec à Montréal (UQAM)], who provided the CRCM5 simulations. We also acknowledge the support of Compute Canada national HPC platform and the Calcul Québec regional HPC platform to run the CRCM5 model. References Almeida AP, Baptista SS, Sousa CA, Novo MT, Ramos HC, Panella NA, et al. 2005. Bioecology and vectorial capacity of Aedes albopictus (Diptera: Culicidae) in Macao, China, in relation to dengue virus transmission. J Med Entomol 42(3):419–428, PMID: 15962796. Appassakij H, Khuntikij P, Kemapunmanus M, Wutthanaru...
Source: EHP Research - Category: Environmental Health Authors: Tags: Research Source Type: research