The Differential Effects of Erythropoietin Exposure to Oxidative Stress on Microglia and Astrocytes in vitro

The neonatal brain is especially susceptible to oxidative stress owing to its reduced antioxidant capacity. Following hypoxic-ischemic (HI) injury, for example, there is a prolonged elevation in levels of hydrogen peroxide (H2O2) in the immature brain compared to the adult brain, resulting in lasting injury that can lead to life-long disability or morbidity. Erythropoietin (Epo) is one of few multifaceted treatment options that have been promising enough to trial in the clinic for both term and preterm brain injury. Despite this, there is a lack of clear understanding of how Epo modulates glial cell activity following oxidative injury, specifically, whether it affects microglia (Mg) and astrocytes (Ast) differently. Using an in vitro approach using primary murine Mg and Ast subjected to H2O2 injury, we studied the oxidative and inflammatory responses of Mg and Ast to recombinant murine (rm)Epo treatment. We found that Epo protects Ast from H2O2 injury (p
Source: Developmental Neuroscience - Category: Neuroscience Source Type: research