Enhanced adhesion and in situ photothermal ablation of cancer cells in surface-functionalized electrospun microfiber scaffold with graphene oxide

Publication date: 30 June 2017 Source:International Journal of Pharmaceutics, Volume 526, Issues 1–2 Author(s): Nicolò Mauro, Cinzia Scialabba, Giovanna Pitarresi, Gaetano Giammona The physicochemical characteristics of a biomaterial surface highly affect the interaction with living cells. Recently, much attention has been focused on the adhesion properties of functional biomaterials toward cancer cells, since is expected to control metastatic spread of a tumor, which is related to good probability containing the progression of disease burden. Here, we designed an implantable poly(caprolactone)-based electrospun microfiber scaffold, henceforth PCLMF-GO, to simultaneously capture and kill cancer cells by tuning physicochemical features of the hybrid surface through nitrogen plasma activation and hetero-phase graphene oxide (GO) covalent functionalization. The surface immobilization of GO implies enhanced cell adhesion and proliferation, promoting the selective adhesion of cancer cells, even if allowing cancer associated fibroblast (CAFs) capture. We also display that the functionalization with GO, thanks to the high near-infrared (NIR) absorbance, enables the discrete photothermal eradication of the captured cancer cells in situ (≈98%). Graphical abstract
Source: International Journal of Pharmaceutics - Category: Drugs & Pharmacology Source Type: research