N-Acetylcysteine improves intestinal function in lipopolysaccharides-challenged piglets through multiple signaling pathways.

This study determined whether N-acetylcysteine (NAC) could improve intestinal function through phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), epithelial growth factor receptor (EGFR), toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB), adenosine 5'-monophosphate-activated protein kinase (AMPK), and type I interferon (IFN) signaling pathways in a piglet model of lipopolysaccharides (LPS) challenge. Thirty-two piglets (24-day-old) were randomly allocated to one of four treatments, with eight replicates per treatment and one piglet per replicate. The experiment consisted of four treatments in a 2 × 2 factorial arrangement with two diets (supplemented with 0 or 500 mg NAC/kg diet) and saline or LPS administration. On day 20 of the trial, piglets in the LPS and LPS + NAC groups were intraperitoneally injected with 0 (saline) or 100 μg LPS/kg BW. Blood samples were obtained at 3 h and intestinal mucosae were collected at 6 h post LPS or saline injection. The growth performance was not affected by dietary NAC. LPS induced intestinal dysfunction, as indicated by: (1) reductions in the small-intestinal glutathione concentrations and plasma D-xylose levels; (2) elevations in plasma diamine oxidase activity, mucosal MMP3 mRNA levels and caspase-3 protein abundance; (3) reduced the activities of the small-intestinal mucosal maltase, sucrase and lactase. The adverse effects of LPS on porcine intestinal function and redo...
Source: Amino Acids - Category: Biochemistry Authors: Tags: Amino Acids Source Type: research