Lipid nanovehicles with adjustable surface properties for overcoming multiple barriers simultaneously in oral administration

Publication date: 30 March 2017 Source:International Journal of Pharmaceutics, Volume 520, Issues 1–2 Author(s): Lei Wu, Min Liu, Wei Shan, Yi Cui, Zhirong Zhang, Yuan Huang Lipid nanoparticles (LNs) are widely investigated for oral drug delivery, and for achieving significant advantages in colloidal stability, biocompatibility and scaled-up possibility. However, researchers face challenge of developing methods to improve the ability of LNs in overcoming multiple barriers (i.e., mucus and epithelium barrier) in gastrointestinal (GI) tract because of the contradictory requirement of nanoparticle (NP) surface properties in the two processes. Therefore, we designed novel LNs with adjustable surface properties by coating lipid core with hydrophobic substitutes grafting N-(2-hydroxypropyl) methacrylamide copolymer (pHPMA). In the present study, different substitutes (i.e., monocyclic, polycyclic, and linear segments) were grafted on pHPMA backbone. Screening studies demonstrated that type and grafting degree of substitutes both influenced hydrophilic-hydrophobic properties of NP surface and improved penetration through mucus. When a hydrophilic-hydrophobic balance was achieved, NPs showed elevated mucus permeability compared with bare LNs; this phenomenon subsequently contributed to higher cellular uptake. Moreover, β-sitosterol (SITO)-modified pHPMA-coated (grafting degree: 5%) LNs (5% SITO-LNs) exhibited the highest mucus permeability, transepithelial transport, and i...
Source: International Journal of Pharmaceutics - Category: Drugs & Pharmacology Source Type: research