A Mathematical Model of the Rat Kidney: K+-Induced Natriuresis.

A Mathematical Model of the Rat Kidney: K+-Induced Natriuresis. Am J Physiol Renal Physiol. 2017 Feb 08;:ajprenal.00536.2016 Authors: Weinstein AM Abstract A model of the rat nephron (Am. J. Physiol. 308:F1098, 2015) has been extended with addition of medullary vasculature. Blood vessels contain solutes from the nephron model, plus additional species from the model of Atherton et al. (Am. J. Physiol. 247:F61, 1984), representing hemoglobin buffering. In contrast to prior models of the urine concentrating mechanism, reflection coefficients for DVR are near zero. Model unknowns are initial proximal tubule pressures and flows, connecting tubule pressure, and medullary interstitial pressures and concentrations. The model predicts outer medullary (OM) interstitial gradients for Na+, K+, CO2, and NH4+, such that at OM-IM junction, the respective concentrations relative to plasma are 1.2, 3.0, 2.7, and 8.0; within IM, there is high urea and low HCO3-, with concentration ratios of 11 and 0.5 near the papillary tip. Quantitative similarities are noted between K+ and urea handling (medullary delivery and permeabilities). The model K+ gradient is physiologic, and the urea gradient is steeper due to restriction of urea permeability to distal collecting duct. Nevertheless, the predicted urea gradient is less than expected, suggesting reconsideration of proposals of an unrecognized reabsorptive urea flux. When plasma K+ is increased from 5.0 to 5....
Source: Am J Physiol Renal P... - Category: Urology & Nephrology Authors: Tags: Am J Physiol Renal Physiol Source Type: research